4 research outputs found

    Impacts of Sex Differences in Pulse Pressure among Patients with Chronic Kidney Disease

    No full text
    Introduction: Though disease-related differences between the sexes have increasingly attracted attention, the renal impact of pulse pressure (PP) in patients with chronic kidney disease (CKD) has never been investigated comprehensively in relation to differences associated with sex. We aimed to examine sex differences in PP as a related factor of CKD progression from the perspective of atherosclerosis. Methods: A total of 156 patients with CKD matched according to age and estimated glomerular filtration rate (eGFR) were separated into sex-based cohorts. Multivariate Cox proportional hazards analyses were performed to identify factors associated with renal outcomes. Kaplan–Meier analyses were performed to assess disease progression, which was defined as a ≥50% estimated glomerular filtration rate (eGFR) decline or end-stage renal disease. Results: The mean age of the study participants was 58.9 ± 13.1 years, and the median follow-up period was 114.0 months. A multivariate Cox regression analysis showed that PP was significantly associated with disease progression among the entire cohort (p = 0.007). In the sex-based sub-cohort analyses, PP was significantly associated with disease progression in men (p = 0.0004) but not in women. Among the entire cohort, PP was correlated positively with age (p = 0.03) and negatively with high-density lipoprotein-cholesterol (HDL-C) level (p = 0.003). PP was significantly correlated with visceral fat area (VFA) (p = 0.04) and hemoglobin level (p = 0.04) in men and with HDL-C level (p = 0.003) in women. Conclusion: A high PP is a significant related factor of CKD progression, especially in men, in whom it is significantly associated with greater VFA and lower hemoglobin level

    Visceral to subcutaneous fat ratio as an indicator of a ≥30% eGFR decline in chronic kidney disease.

    No full text
    Whether the visceral-to-subcutaneous fat ratio (V/S ratio) is associated with renal prognosis in patients with chronic kidney disease (CKD) remains unclear. Furthermore, little is known about the effect of sex and the absolute amount of visceral fat accumulation such as visceral fat area (VFA) ≥100 cm2 on the V/S ratio in relation to renal prognosis. In this study, 200 patients with CKD were evaluated for renal prognosis. Survival analyses and logistic regression analyses were conducted, generating time-series pseudo-R2 values. The mean and percent change of the pseudo-R2 values from the 6th year to the 10th year (6Y-10Y Mean and 6Y-10Y Change, respectively) were calculated for determining the cut-off points for the medium-term renal prognosis. Multivariate Cox regression analysis revealed that the V/S ratio was significantly associated with renal outcomes and that the VFA category (VFA ≥ 100 cm2) had significant interactions with the V/S ratio regarding renal prognosis. The hazard ratio (HR) of the V/S ratio was higher in the sub-cohort of VFA < 100 cm2 than in the sub-cohort of VFA ≥ 100 cm2 (HR: 6.42 vs. 1.00). Regarding sex differences, a strong association was noted between the V/S ratio and renal prognosis in women but not in men (HR: 2.40 vs. 1.10). On the other hand, 6Y-10Y Mean of the pseudo-R2 values indicated differences in the cut-off points of the V/S ratio between men and women (V/S ratio: 0.75 vs. 0.5). Our findings indicate that it may be clinically meaningful to consider the differences in sex and the amount of VFA ≥100 cm2 for the V/S ratio in relation to renal outcomes in patients with CKD. The 6Y-10Y Mean of the pseudo-R2 values contributed to determining the cut-off points of the V/S ratio according to the sex difference

    Time series changes in pseudo-R2 values regarding maximum glomerular diameter and the Oxford MEST-C score in patients with IgA nephropathy: A long-term follow-up study.

    No full text
    There is no effectual pathological factor to predict the long-term renal prognosis of IgA nephropathy. Glomerular hypertrophy plays a crucial role in kidney disease outcomes in both experimental models and humans. This study aimed to 1) confirm the long-term prognostic significance of a maximal glomerular diameter (Max GD) ≥ 242.3 μm, 2) test a renal prognosis prediction model adding Max GD ≥ 242.3 μm to the Oxford classification (MEST-C), and 3) examine the time series changes in the long-term renal prognosis of patients with IgA nephropathy. The study included 43 patients diagnosed with IgA nephropathy from 1993 to 1998 at Kameda General Hospital. Renal prognosis with the endpoint of a 50% reduction in estimated glomerular filtration rate (eGFR) or the development of end-stage renal disease requiring dialysis was examined using logistic regression analysis, Cox regression analysis, and the Kaplan-Meier method. Pathological evaluation was performed using MEST-C and Max GD, and the validity of the prediction model was evaluated. Patients with Max GD ≥ 242.3 μm had significantly poor renal prognosis with multivariate Cox analysis (P = 0.0293). The results of the Kaplan-Meier analysis showed that kidney survival rates in the high-Max GD group were significantly lower than those in the low-Max GD group (log rank, P = 0.0043), which was confirmed in propensity score-matched models (log rank, P = 0.0426). Adding Max GD ≥ 242.3 μm to MEST-C improved diagnostic power of the renal prognosis prediction model by renal pathology tissue examination (R2: 3.3 to 14.5%, AICc: 71.8 to 68.0, C statistic: 0.657 to 0.772). We confirm that glomerular hypertrophy is useful as a long-term renal prognostic factor

    Maximum Glomerular Diameter and Oxford MEST-C Score in IgA Nephropathy: The Significance of Time-Series Changes in Pseudo-R2 Values in Relation to Renal Outcomes

    No full text
    The progression of immunoglobulin A nephropathy (IgAN) is currently assessed using the Oxford MEST-C score, which uses five indicators (mesangial and endocapillary hypercellularity, segmental sclerosis, interstitial fibrosis/tubular atrophy, and the presence of crescents) but has not yet included any risk factors related to glomerular size. Therefore, we tested whether adding another indicator, maximal glomerular diameter (Max GD), would improve the prognostic ability of this scoring system. The data of 101 adult patients diagnosed with IgAN between March 2002 and September 2004 were reviewed. We used McFadden&rsquo;s pseudo-R2 and the corrected Akaike information criterion to assess model fit and the concordance (C)-statistic to assess discriminatory ability. A 10 &mu;m increase in Max GD was significantly associated with a composite outcome (&ge;50% decline in the estimated glomerular filtration rate or end-stage renal disease). The receiver operating characteristic analysis determined the cut-off for high vs. low Max GD at 245.9 &mu;m, and adding high Max GD to the MEST-C score significantly improved the model&rsquo;s discrimination of renal outcomes at 5 and &ge;10 years. Thus, including the Max GD in the Oxford classification of IgAN might increase its robustness and provide a more comprehensive prognostic system for clinical settings
    corecore