260 research outputs found

    Prediction of the Size Distributions of Methanol-Ethanol Clusters Detected in VUV Laser/Time-of-flight Mass Spectrometry

    Get PDF
    The size distributions and geometries of vapor clusters equilibrated with methanolāˆ’ethanol (Meāˆ’Et) liquid mixtures were recently studied by vacuum ultraviolet (VUV) laser time-of-flight (TOF) mass spectrometry and density functional theory (DFT) calculations (Liu, Y.; Consta, S.; Ogeer, F.; Shi, Y. J.; Lipson, R. H. Can. J. Chem. 2007, 85, 843āˆ’852). On the basis of the mass spectra recorded, it was concluded that the formation of neutral tetramers is particularly prominent. Here we develop grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) frameworks to compute cluster size distributions in vapor mixtures that allow a direct comparison with experimental mass spectra. Using the all-atom optimized potential for liquid simulations (OPLS-AA) force field, we systematically examined the neutral cluster size distributions as functions of pressure and temperature. These neutral cluster distributions were then used to derive ionized cluster distributions to compare directly with the experiments. The simulations suggest that supersaturation at 12 to 16 times the equilibrium vapor pressure at 298 K or supercooling at temperature 240 to 260 K at the equilibrium vapor pressure can lead to the relatively abundant tetramer population observed in the experiments. Our simulations capture the most distinct features observed in the experimental TOF mass spectra: Et3H+ at m/z = 139 in the vapor corresponding to 10:90% Meāˆ’Et liquid mixture and Me3H+ at m/z = 97 in the vapors corresponding to 50:50% and 90:10% Meāˆ’Et liquid mixtures. The hybrid GCMC scheme developed in this work extends the capability of studying the size distributions of neat clusters to mixed species and provides a useful tool for studying environmentally important systems such as atmospheric aerosols

    Improving 3D-aware Image Synthesis with A Geometry-aware Discriminator

    Full text link
    3D-aware image synthesis aims at learning a generative model that can render photo-realistic 2D images while capturing decent underlying 3D shapes. A popular solution is to adopt the generative adversarial network (GAN) and replace the generator with a 3D renderer, where volume rendering with neural radiance field (NeRF) is commonly used. Despite the advancement of synthesis quality, existing methods fail to obtain moderate 3D shapes. We argue that, considering the two-player game in the formulation of GANs, only making the generator 3D-aware is not enough. In other words, displacing the generative mechanism only offers the capability, but not the guarantee, of producing 3D-aware images, because the supervision of the generator primarily comes from the discriminator. To address this issue, we propose GeoD through learning a geometry-aware discriminator to improve 3D-aware GANs. Concretely, besides differentiating real and fake samples from the 2D image space, the discriminator is additionally asked to derive the geometry information from the inputs, which is then applied as the guidance of the generator. Such a simple yet effective design facilitates learning substantially more accurate 3D shapes. Extensive experiments on various generator architectures and training datasets verify the superiority of GeoD over state-of-the-art alternatives. Moreover, our approach is registered as a general framework such that a more capable discriminator (i.e., with a third task of novel view synthesis beyond domain classification and geometry extraction) can further assist the generator with a better multi-view consistency.Comment: Accepted by NeurIPS 2022. Project page: https://vivianszf.github.io/geo

    LinkGAN: Linking GAN Latents to Pixels for Controllable Image Synthesis

    Full text link
    This work presents an easy-to-use regularizer for GAN training, which helps explicitly link some axes of the latent space to a set of pixels in the synthesized image. Establishing such a connection facilitates a more convenient local control of GAN generation, where users can alter the image content only within a spatial area simply by partially resampling the latent code. Experimental results confirm four appealing properties of our regularizer, which we call LinkGAN. (1) The latent-pixel linkage is applicable to either a fixed region (\textit{i.e.}, same for all instances) or a particular semantic category (i.e., varying across instances), like the sky. (2) Two or multiple regions can be independently linked to different latent axes, which further supports joint control. (3) Our regularizer can improve the spatial controllability of both 2D and 3D-aware GAN models, barely sacrificing the synthesis performance. (4) The models trained with our regularizer are compatible with GAN inversion techniques and maintain editability on real images

    Comparison of the Inhibitory Potential of Bavachalcone and Corylin against UDP-Glucuronosyltransferases

    Get PDF
    Bavachalcone and corylin are two major bioactive compounds isolated from Psoralea corylifolia L., which has been widely used as traditional Chinese medicine for many years. As two antibiotic or anticancer drugs, bavachalcone and corylin are used in combination with other drugs; thus it is necessary to evaluate potential pharmacokinetic herb-drug interactions (HDI) of the two bioactive compounds. The aim of the present study was to compare the effects of liver UDP-glucuronosyltransferase (UGT) 1A1, UGT1A3, UGT1A7, UGT1A8, UGT 1A10, and UGT2B4 inhibited by bavachalcone and corylin. 4-Methylumbelliferone (4-MU) was used as a nonspecific ā€œprobeā€ substrate. Bavachalcone had stronger inhibition on UGT1A1 and UGT1A7 than corylin which did not inhibit UGT1A1, UGT1A3, UGT1A7, UGT1A8, UGT1A10, and UGT2B4. Data fitting using Dixon and Lineweaver-Burk plots demonstrated the noncompetitive inhibition of bavachalcone against UGT1A1 and UGT1A7-mediated 4-MU glucuronidation reaction. The values of inhibition kinetic parameters (Ki) were 5.41ā€‰Ī¼M and 4.51ā€‰Ī¼M for UGT1A1 and UGT1A7, respectively. The results of present study suggested that there was a possibility of UGT1A1 and UGT1A7 inhibition-based herb-drug interaction associated with bavachalcone and provided the basis for further in vivo studies to investigate the HDI potential between bavachalcone and UGT substrates
    • ā€¦
    corecore