383 research outputs found

    Res-Tuning: A Flexible and Efficient Tuning Paradigm via Unbinding Tuner from Backbone

    Full text link
    Parameter-efficient tuning has become a trend in transferring large-scale foundation models to downstream applications. Existing methods typically embed some light-weight tuners into the backbone, where both the design and the learning of the tuners are highly dependent on the base model. This work offers a new tuning paradigm, dubbed Res-Tuning, which intentionally unbinds tuners from the backbone. With both theoretical and empirical evidence, we show that popular tuning approaches have their equivalent counterparts under our unbinding formulation, and hence can be integrated into our framework effortlessly. Thanks to the structural disentanglement, we manage to free the design of tuners from the network architecture, facilitating flexible combination of various tuning strategies. We further propose a memory-efficient variant of Res-Tuning, where the bypass i.e., formed by a sequence of tuners) is effectively detached from the main branch, such that the gradients are back-propagated only to the tuners but not to the backbone. Such a detachment also allows one-time backbone forward for multi-task inference. Extensive experiments on both discriminative and generative tasks demonstrate the superiority of our method over existing alternatives from the perspectives of efficacy and efficiency. Project page: \href\href{https://res-tuning.github.io/}{\textit{https://res-tuning.github.io/}}.Comment: Accepted to NeurIPS 202

    Phosphorus adsorption characteristics and release risk in saline soils: a case study of Songnen Plain, China

    Get PDF
    IntroductionThe Songnen Plain is one of the three major saline-alkali areas in China, covering a vast area, where drought and overgrazing have exacerbated the salinization trend, and will have great potential for development if utilized rationally. Phosphorus, as one of important soil nutrients, plays a crucial role in plant growth. How to minimize its loss and migration has become a current research hotspot. The objective of the present study was to elucidate the adsorption properties of phosphorus in soils affected by salinization and to establish the correlation between the potential for phosphorus release and soil properties.MethodsA batch treatment test was conducted in this study using three soils with the various salinization degrees to examine the impact of environmental factors on the adsorption properties and potential release of phosphorus.Results and discussionIt was found that the maximum phosphorus adsorption by the three salinization soils in 0-360 minutes accounted for 86.8%-90.5% of the total adsorption capacity; the equilibrium adsorption capacity was: HS> MS> LS. In cases where the phosphorus level in the surrounding liquid is low, the three levels of salinized soils exhibited varying levels of phosphorus discharge, with the adsorbent acting as the origin of contaminants. The Pseudo-second-order model kinetics and Langmuir equation can well describe the adsorption process, and the adsorption process is spontaneous heat absorption with entropy increase. Increasing the pH led to an increase in the adsorption of phosphorus from the three salinized soils. Additionally, the adsorption was enhanced by introducing varying concentrations of Na+, Ca2+, and Al3+ to the background solution. The phosphorus eutrophication release risk (ERI) demonstrated a gradual decline as temperature increased. Correlation analysis revealed a noteworthy positive correlation between TN, TP, and ERI, as well as a significant negative correlation between CEC, K+, and ERI. Furthermore, there was a highly significant negative correlation between coarse silt and fine silt. Considering local climatic and environmental factors is crucial for controlling the adsorption capacity of phosphorus in various salinized soils, as it can unveil the mechanism of phosphorus adsorption and impact its migration and release risk

    Validity and reliability of the Chinese version of the Normalization MeAsure Development(NoMAD)

    Get PDF
    Background: The Normalization MeAsure Development (NoMAD) is a brief quantitative tool based on the Normalization Process Theory (NPT), which can measure the implementation process of new technologies and complex interventions. The aim of our study was to translate and culturally adapt the NoMAD into Chinese, and to evaluate the psychometric properties of the Chinese version of NoMAD. Methods: According to the NoMAD translation guideline, we undertook forward translation, backward translation, and compared these translations to get a satisfactory result, then we performed cognitive interviews to achieve cross-culture adaptation. And the psychometric properties of the final version were evaluated among clinical nurses who used the pressure injuries management system via WeChat mini-program at a tertiary hospital in northwestern China. Results: A total of 258 nurses were enrolled in our study, and the response rate was 92.1%. The Cronbach’s alpha of four dimensions were as follow: Coherence (0.768), Cognitive Participation (0.904), Collective Action (0.820), and Reflexive Monitoring (0.808). The overall internal consistency was 0.941. The confirmatory factor analysis results showed a good fit for its theoretical structure (CFI = 0.924, TLI = 0.910, RMSEA = 0.0079, SRMSR = 0.046, χ2/df = 2.61). The item-level content validity index ranged from 0.857 to 1, and the scale-level content validity index was 0.95. There were positive correlations between four constructs scores and three general normalization scores. Conclusions: The Chinese version of NoMAD is a reliable and valid tool to evaluate the implementation process of innovations

    High-speed modal analysis of dynamic modal coupling in fiber laser oscillator

    Get PDF
    Up till now, the spatial and temporal dynamics of transverse mode instability (TMI) in fiber laser oscillator have increasingly attracted a worldwide attention. Here, we develop a high-speed modal decomposition (MD) system to analyze the modal coupling for fiber laser oscillator above the TMI threshold. A set of angular-multiplexing transmission functions (TFs) are designed for simultaneous MD and monitoring the far-field beam profile. The TMI threshold of the deployed fiber laser oscillator is 181 W at a co-pumping power (CPP) of 279 W. As the CPP increases from 318 W to 397 W, the power fluctuations of the output laser become more drastic. The changes of the far-field beam profile and the centroid of far-field spot (COFFS) indicate an increased velocity of energy transfer between modes. The high-speed MD verifies above process and analyzes the modal components, indicating that the single cycle of modal coupling decreases from 11 ms to 4 ms. Otherwise, the strong mode coupling occurs between modes with relatively large weights. The high-speed MD provides a powerful tool to research the TMI effect

    Dynamic modal characteristics of transverse mode instabilities in ytterbium-doped fiber laser oscillator

    Get PDF
    In recent years, transverse mode instability (TMI) has been widely observed in fiber laser amplifier systems. The transverse mode instability phenomenon in fiber laser oscillators is less studied. Here, we focus on the dynamical output properties, i.e., its temporal signal and modal characteristics in a 30-μm-core-diameter ytterbium (Yb)-doped fiber laser oscillator. The TMI occurs at a pumping power around 310 W. Different from amplifiers, the basic oscillation frequency is quite low, at around 100 Hz, changing with time and pump power. When the fiber laser oscillator operates beyond TMI threshold at 357 W or 377 W for a while, the temporal fluctuation slowly disappears together with a decreased oscillation frequency, and appears again later. Based on the mode decomposition technique, we find that during the period of fluctuation disappearance at 357 W, the power output stays low and the output beam is still a mixture of fundamental mode and higher-order modes. The fundamental mode content is calculated to be averagely higher when temporal fluctuation disappears, increasing from ∼57% to ∼63%. Our results indicate complex interaction between the fiber laser oscillation and the TMI effect, and calls for more attention into understanding TMI in fiber laser oscillators

    Complete chloroplast genome sequences of Dioscorea: Characterization, genomic resources, and phylogenetic analyses

    Get PDF
    Dioscorea L., the largest genus of the family Dioscoreaceae with over 600 species, is not only an important food but also a medicinal plant. The identification and classification of Dioscorea L. is a rather difficult task. In this study, we sequenced five Dioscorea chloroplast genomes, and analyzed with four other chloroplast genomes of Dioscorea species from GenBank. The Dioscorea chloroplast genomes displayed the typical quadripartite structure of angiosperms, which consisted of a pair of inverted repeats separated by a large single-copy region, and a small single-copy region. The location and distribution of repeat sequences and microsatellites were determined, and the rapidly evolving chloroplast genome regions (trnK-trnQ, trnS-trnG, trnC-petN, trnE-trnT, petG-trnW-trnP, ndhF, trnL-rpl32, and ycf1) were detected. Phylogenetic relationships of Dioscorea inferred from chloroplast genomes obtained high support even in shortest internodes. Thus, chloroplast genome sequences provide potential molecular markers and genomic resources for phylogeny and species identification
    • …
    corecore