49 research outputs found

    Circulating miR-203 derived from metastatic tissues promotes myopenia in colorectal cancer patients

    Get PDF
    Sarcopenia frequently occurs in metastatic cancer patients. Emerging evidence has revealed that various secretory products from metastatic tumours can influence host organs and promote sarcopenia in patients with malignancies. Furthermore, the biological functions of microRNAs in cell-to-cell communication by incorporating into neighbouring or distal cells, which have been gradually elucidated in various diseases, including sarcopenia, have been elucidated. We evaluated psoas muscle mass index (PMI) and intramuscular adipose tissue content (IMAC) using pre-operative computed tomography imaging in 183 colorectal cancer (CRC) patients. miR-203 expression levels in CRC tissues and pre-operative serum were evaluated using quantitative polymerase chain reaction. Functional analysis of miR-203 overexpression was investigated in human skeletal muscle cells (SkMCs), and cells were analysed for proliferation and apoptosis. Expressions of several putative miR-203 target genes (CASP3, CASP10, BIRC5, BMI1, BIRC2, and BIRC3) in SKMCs were validated. A total of 183 patients (108 men and 75 women) were included. The median age of enrolled patients at diagnosis was 68.0 years (range 35-89 years). High IMAC status significantly correlated with female gender (P = 0.004) and older age (P = 0.0003); however, no other clinicopathological factors correlated with IMAC status in CRC patients. In contrast, decreased PMI significantly correlated with female gender (P = 0.006) and all well-established disease development factors, including advanced T stage (P = 0.035), presence of venous invasion (P = 0.034), lymphovascular invasion (P = 0.012), lymph node (P = 0.001), distant metastasis (P = 0.002), and advanced Union for International Cancer Control tumour-node-metastasis stage classification (P = 0.0004). Although both high IMAC status and low PMI status significantly correlated with poor overall survival (IMAC: P = 0.0002; PMI: P < 0.0001; log-rank test) and disease-free survival (IMAC: P = 0.0003; PMI: P = 0.0002; log-rank test), multivariate Cox's regression analysis revealed that low PMI was an independent prognostic factor for both overall survival (hazard ratio: 4.69, 95% confidence interval (CI): 2.19-10, P = 0.0001) and disease-free survival (hazard ratio: 2.33, 95% CI: 1.14-4.77, P = 0.021) in CRC patients. Serum miR-203 expression negatively correlated with pre-operative PMI level (P = 0.0001, ρ = -0.25), and multivariate logistic regression analysis revealed that elevated serum miR-203 was an independent risk factor for myopenia (low PMI) in CRC patients (odds ratio: 5.16, 95% CI: 1.8-14.8, P = 0.002). Overexpression of miR-203 inhibited cell proliferation and induced apoptosis via down-regulation of BIRC5 (survivin) expression in human SkMC line. Assessment of serum miR-203 expression could be used for risk assessment of myopenia, and miR-203 might be a novel therapeutic target for inhibition of myopenia in CRC

    Time-Dependent Interaction between Differentiated Embryo Chondrocyte-2 and CCAAT/Enhancer-Binding Protein ␣ Underlies the Circadian Expression of CYP2D6 in Serum- Shocked HepG2 Cells

    Get PDF
    ABSTRACT Differentiated embryo chondrocyte-2 (DEC2), also known as bHLHE41 or Sharp1, is a pleiotropic transcription repressor that controls the expression of genes involved in cellular differentiation, hypoxia responses, apoptosis, and circadian rhythm regulation. Although a previous study demonstrated that DEC2 participates in the circadian control of hepatic metabolism by regulating the expression of cytochrome P450, the molecular mechanism is not fully understood. We reported previously that brief exposure of HepG2 cells to 50% serum resulted in 24-h oscillation in the expression of CYP3A4 as well as circadian clock genes. In this study, we found that the expression of CYP2D6, a major drug-metabolizing enzyme in humans, also exhibited a significant oscillation in serum-shocked HepG2 cells. DEC2 interacted with CCAAT/enhancer-binding protein (C/EBP␣), accompanied by formation of a complex with histone deacetylase-1, which suppressed the transcriptional activity of C/EBP␣ to induce the expression of CYP2D6. The oscillation in the protein levels of DEC2 in serum-shocked HepG2 cells was nearly antiphase to that in the mRNA levels of CYP2D6. Transfection of cells with small interfering RNA against DEC2 decreased the amplitude of CYP2D6 mRNA oscillation in serumshocked cells. These results suggest that DEC2 periodically represses the promoter activity of CYP2D6, resulting in its circadian expression in serum-shocked cells. DEC2 seems to constitute a molecular link through which output components from the circadian clock are associated with the time-dependent expression of hepatic drug-metabolizing enzyme

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    Technological development of alternative method to animal experiments in Japan

    No full text

    Use of corticosteroids for remission induction therapy in patients with new-onset ulcerative colitis in real-world settings

    No full text
    Background: Corticosteroids may be temporarily effective for ulcerative colitis (UC), but long-term use increases the risk of adverse drug reactions. Objective: The goal of the study was to examine steroid use in remission induction therapy after diagnosis of UC. Study Design: A retrospective observational study using the Japan Medical Data Center (JMDC) Claims Database from January 2008 to December 2014. Setting: Clinics, university hospitals, and national/public hospitals. Intervention: Initiation of steroids after diagnosis of UC. Main outcome measures: Start time and annual rate of steroid use, and use during the first 6 months of remission induction therapy. Results: The subjects were 399 patients were newly diagnosed with UC in the study period. The rate of steroid use after diagnosis was 58.4% in 2009, and showed a significant decreasing trend yearly after 2010 (p ≤ 0.0001). Regarding the start time, 52.2% of patients began steroids within 60 days after diagnosis of UC. At 6 months after initiation, 23.7% continued to use steroids and 73.9% of these patients used high-dose steroids. Conclusion: In treatment of UC after diagnosis, many patients continue to use steroids for >6 months after initiation. Reduced use of steroids based on clinical practice guidelines for UC should be promoted
    corecore