17 research outputs found

    INSIG2 gene rs7566605 polymorphism is associated with severe obesity in Japanese

    Get PDF
    The single nucleotide polymorphism (SNP) rs7566605 in the upstream region of the insulin-induced gene 2 (INSIG2) is associated with the obesity phenotype in many Caucasian populations. In Japanese, this association with the obesity phenotype is not clear. To investigate the relationship between rs7566605 and obesity in Japanese, we genotyped rs7566605 from severely obese subjects [n = 908, body mass index (BMI) ≥ 30 kg/m2] and normal-weight control subjects (n = 1495, BMI < 25 kg/m2). A case–control association analysis revealed that rs7566605 was significantly associated with obesity in Japanese. The P value in the minor allele recessive mode was 0.00020, and the odds ratio (OR) adjusted for gender and age was 1.61 [95% confidential interval (CI) = 1.24–2.09]. Obesity-associated phenotypes, which included the level of BMI, plasma glucose, hemoglobin A1c, total cholesterol, triglycerides, high-density lipoprotein (HDL) cholesterol, and blood pressure, were not associated with the rs7566605 genotype. Thus, rs7566605 in the upstream region of the INSIG2 gene was found to be associated with obesity, i.e., severe obesity, in Japanese

    GABAA Receptor-Mediated Acceleration of Aging-Associated Memory Decline in APP/PS1 Mice and Its Pharmacological Treatment by Picrotoxin

    Get PDF
    Advanced age and mutations in the genes encoding amyloid precursor protein (APP) and presenilin (PS1) are two serious risk factors for Alzheimer's disease (AD). Finding common pathogenic changes originating from these risks may lead to a new therapeutic strategy. We observed a decline in memory performance and reduction in hippocampal long-term potentiation (LTP) in both mature adult (9–15 months) transgenic APP/PS1 mice and old (19–25 months) non-transgenic (nonTg) mice. By contrast, in the presence of bicuculline, a GABAA receptor antagonist, LTP in adult APP/PS1 mice and old nonTg mice was larger than that in adult nonTg mice. The increased LTP levels in bicuculline-treated slices suggested that GABAA receptor-mediated inhibition in adult APP/PS1 and old nonTg mice was upregulated. Assuming that enhanced inhibition of LTP mediates memory decline in APP/PS1 mice, we rescued memory deficits in adult APP/PS1 mice by treating them with another GABAA receptor antagonist, picrotoxin (PTX), at a non-epileptic dose for 10 days. Among the saline vehicle-treated groups, substantially higher levels of synaptic proteins such as GABAA receptor α1 subunit, PSD95, and NR2B were observed in APP/PS1 mice than in nonTg control mice. This difference was insignificant among PTX-treated groups, suggesting that memory decline in APP/PS1 mice may result from changes in synaptic protein levels through homeostatic mechanisms. Several independent studies reported previously in aged rodents both an increased level of GABAA receptor α1 subunit and improvement of cognitive functions by long term GABAA receptor antagonist treatment. Therefore, reduced LTP linked to enhanced GABAA receptor-mediated inhibition may be triggered by aging and may be accelerated by familial AD-linked gene products like Aβ and mutant PS1, leading to cognitive decline that is pharmacologically treatable at least at this stage of disease progression in mice

    GSK-3β Is Required for Memory Reconsolidation in Adult Brain

    Get PDF
    Activation of GSK-3β is presumed to be involved in various neurodegenerative diseases, including Alzheimer's disease (AD), which is characterized by memory disturbances during early stages of the disease. The normal function of GSK-3β in adult brain is not well understood. Here, we analyzed the ability of heterozygote GSK-3β knockout (GSK+/−) mice to form memories. In the Morris water maze (MWM), learning and memory performance of GSK+/− mice was no different from that of wild-type (WT) mice for the first 3 days of training. With continued learning on subsequent days, however, retrograde amnesia was induced in GSK+/− mice, suggesting that GSK+/− mice might be impaired in their ability to form long-term memories. In contextual fear conditioning (CFC), context memory was normally consolidated in GSK+/− mice, but once the original memory was reactivated, they showed reduced freezing, suggesting that GSK+/− mice had impaired memory reconsolidation. Biochemical analysis showed that GSK-3β was activated after memory reactivation in WT mice. Intraperitoneal injection of a GSK-3 inhibitor before memory reactivation impaired memory reconsolidation in WT mice. These results suggest that memory reconsolidation requires activation of GSK-3β in the adult brain

    Amyloid Oligomer Conformation in a Group of Natively Folded Proteins

    Get PDF
    Recent in vitro and in vivo studies suggest that destabilized proteins with defective folding induce aggregation and toxicity in protein-misfolding diseases. One such unstable protein state is called amyloid oligomer, a precursor of fully aggregated forms of amyloid. Detection of various amyloid oligomers with A11, an anti-amyloid oligomer conformation-specific antibody, revealed that the amyloid oligomer represents a generic conformation and suggested that toxic β-aggregation processes possess a common mechanism. By using A11 antibody as a probe in combination with mass spectrometric analysis, we identified GroEL in bacterial lysates as a protein that may potentially have an amyloid oligomer conformation. Surprisingly, A11 reacted not only with purified GroEL but also with several purified heat shock proteins, including human Hsp27, 40, 70, 90; yeast Hsp104; and bovine Hsc70. The native folds of A11-reactive proteins in purified samples were characterized by their anti-β-aggregation activity in terms of both functionality and in contrast to the β-aggregation promoting activity of misfolded pathogenic amyloid oligomers. The conformation-dependent binding of A11 with natively folded Hsp27 was supported by the concurrent loss of A11 reactivity and anti-β-aggregation activity of heat-treated Hsp27 samples. Moreover, we observed consistent anti-β-aggregation activity not only by chaperones containing an amyloid oligomer conformation but also by several A11-immunoreactive non-chaperone proteins. From these results, we suggest that the amyloid oligomer conformation is present in a group of natively folded proteins. The inhibitory effects of A11 antibody on both GroEL/ES-assisted luciferase refolding and Hsp70-mediated decelerated nucleation of Aβ aggregation suggested that the A11-binding sites on these chaperones might be functionally important. Finally, we employed a computational approach to uncover possible A11-binding sites on these targets. Since the β-sheet edge was a common structural motif having the most similar physicochemical properties in the A11-reactive proteins we analyzed, we propose that the β-sheet edge in some natively folded amyloid oligomers is designed positively to prevent β aggregation

    Amyloid Oligomer Conformation in a Group of Natively Folded Proteins

    Full text link
    [[sponsorship]]基因體研究中心[[note]]已出版;[SCI];有審查制度;具代表性[[note]]http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Drexel&SrcApp=hagerty_opac&KeyRecord=1932-6203&DestApp=JCR&RQ=IF_CAT_BOXPLOT[[note]]http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=RID&SrcApp=RID&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=00026442840000

    Waist Circumference as a Health Index and its Related Factors

    Full text link
    corecore