2,139 research outputs found
Semantic Part Segmentation using Compositional Model combining Shape and Appearance
In this paper, we study the problem of semantic part segmentation for
animals. This is more challenging than standard object detection, object
segmentation and pose estimation tasks because semantic parts of animals often
have similar appearance and highly varying shapes. To tackle these challenges,
we build a mixture of compositional models to represent the object boundary and
the boundaries of semantic parts. And we incorporate edge, appearance, and
semantic part cues into the compositional model. Given part-level segmentation
annotation, we develop a novel algorithm to learn a mixture of compositional
models under various poses and viewpoints for certain animal classes.
Furthermore, a linear complexity algorithm is offered for efficient inference
of the compositional model using dynamic programming. We evaluate our method
for horse and cow using a newly annotated dataset on Pascal VOC 2010 which has
pixelwise part labels. Experimental results demonstrate the effectiveness of
our method
Parsing Occluded People by Flexible Compositions
This paper presents an approach to parsing humans when there is significant
occlusion. We model humans using a graphical model which has a tree structure
building on recent work [32, 6] and exploit the connectivity prior that, even
in presence of occlusion, the visible nodes form a connected subtree of the
graphical model. We call each connected subtree a flexible composition of
object parts. This involves a novel method for learning occlusion cues. During
inference we need to search over a mixture of different flexible models. By
exploiting part sharing, we show that this inference can be done extremely
efficiently requiring only twice as many computations as searching for the
entire object (i.e., not modeling occlusion). We evaluate our model on the
standard benchmarked "We Are Family" Stickmen dataset and obtain significant
performance improvements over the best alternative algorithms.Comment: CVPR 15 Camera Read
Articulated Pose Estimation by a Graphical Model with Image Dependent Pairwise Relations
We present a method for estimating articulated human pose from a single
static image based on a graphical model with novel pairwise relations that make
adaptive use of local image measurements. More precisely, we specify a
graphical model for human pose which exploits the fact the local image
measurements can be used both to detect parts (or joints) and also to predict
the spatial relationships between them (Image Dependent Pairwise Relations).
These spatial relationships are represented by a mixture model. We use Deep
Convolutional Neural Networks (DCNNs) to learn conditional probabilities for
the presence of parts and their spatial relationships within image patches.
Hence our model combines the representational flexibility of graphical models
with the efficiency and statistical power of DCNNs. Our method significantly
outperforms the state of the art methods on the LSP and FLIC datasets and also
performs very well on the Buffy dataset without any training.Comment: NIPS 2014 Camera Read
A Meta-Theory of Boundary Detection Benchmarks
Human labeled datasets, along with their corresponding evaluation algorithms,
play an important role in boundary detection. We here present a psychophysical
experiment that addresses the reliability of such benchmarks. To find better
remedies to evaluate the performance of any boundary detection algorithm, we
propose a computational framework to remove inappropriate human labels and
estimate the intrinsic properties of boundaries.Comment: NIPS 2012 Workshop on Human Computation for Science and Computational
Sustainabilit
Statistical physics, mixtures of distributions, and the EM algorithm
We show that there are strong relationships between approaches to optmization and learning based on statistical physics or mixtures of experts. In particular, the EM algorithm can be interpreted as converging either to a local maximum of the mixtures model or to a saddle point solution to the statistical physics system. An advantage of the statistical physics approach is that it naturally gives rise to a heuristic continuation method, deterministic annealing, for finding good solutions
- …