2,139 research outputs found

    Semantic Part Segmentation using Compositional Model combining Shape and Appearance

    Get PDF
    In this paper, we study the problem of semantic part segmentation for animals. This is more challenging than standard object detection, object segmentation and pose estimation tasks because semantic parts of animals often have similar appearance and highly varying shapes. To tackle these challenges, we build a mixture of compositional models to represent the object boundary and the boundaries of semantic parts. And we incorporate edge, appearance, and semantic part cues into the compositional model. Given part-level segmentation annotation, we develop a novel algorithm to learn a mixture of compositional models under various poses and viewpoints for certain animal classes. Furthermore, a linear complexity algorithm is offered for efficient inference of the compositional model using dynamic programming. We evaluate our method for horse and cow using a newly annotated dataset on Pascal VOC 2010 which has pixelwise part labels. Experimental results demonstrate the effectiveness of our method

    Parsing Occluded People by Flexible Compositions

    Get PDF
    This paper presents an approach to parsing humans when there is significant occlusion. We model humans using a graphical model which has a tree structure building on recent work [32, 6] and exploit the connectivity prior that, even in presence of occlusion, the visible nodes form a connected subtree of the graphical model. We call each connected subtree a flexible composition of object parts. This involves a novel method for learning occlusion cues. During inference we need to search over a mixture of different flexible models. By exploiting part sharing, we show that this inference can be done extremely efficiently requiring only twice as many computations as searching for the entire object (i.e., not modeling occlusion). We evaluate our model on the standard benchmarked "We Are Family" Stickmen dataset and obtain significant performance improvements over the best alternative algorithms.Comment: CVPR 15 Camera Read

    Articulated Pose Estimation by a Graphical Model with Image Dependent Pairwise Relations

    Full text link
    We present a method for estimating articulated human pose from a single static image based on a graphical model with novel pairwise relations that make adaptive use of local image measurements. More precisely, we specify a graphical model for human pose which exploits the fact the local image measurements can be used both to detect parts (or joints) and also to predict the spatial relationships between them (Image Dependent Pairwise Relations). These spatial relationships are represented by a mixture model. We use Deep Convolutional Neural Networks (DCNNs) to learn conditional probabilities for the presence of parts and their spatial relationships within image patches. Hence our model combines the representational flexibility of graphical models with the efficiency and statistical power of DCNNs. Our method significantly outperforms the state of the art methods on the LSP and FLIC datasets and also performs very well on the Buffy dataset without any training.Comment: NIPS 2014 Camera Read

    A Meta-Theory of Boundary Detection Benchmarks

    Get PDF
    Human labeled datasets, along with their corresponding evaluation algorithms, play an important role in boundary detection. We here present a psychophysical experiment that addresses the reliability of such benchmarks. To find better remedies to evaluate the performance of any boundary detection algorithm, we propose a computational framework to remove inappropriate human labels and estimate the intrinsic properties of boundaries.Comment: NIPS 2012 Workshop on Human Computation for Science and Computational Sustainabilit

    Statistical physics, mixtures of distributions, and the EM algorithm

    Get PDF
    We show that there are strong relationships between approaches to optmization and learning based on statistical physics or mixtures of experts. In particular, the EM algorithm can be interpreted as converging either to a local maximum of the mixtures model or to a saddle point solution to the statistical physics system. An advantage of the statistical physics approach is that it naturally gives rise to a heuristic continuation method, deterministic annealing, for finding good solutions
    • …
    corecore