14 research outputs found

    Characterizing crystalline defects in single nanoparticles from angular correlations of single-shot diffracted X-rays

    Get PDF
    Characterizing and controlling the uniformity of nanoparticles is crucial for their application in science and technology because crystalline defects in the nanoparticles strongly affect their unique properties. Recently, ultra-short and ultra-bright X-ray pulses provided by X-ray free-electron lasers (XFELs) opened up the possibility of structure determination of nanometre-scale matter with angstrom spatial resolution. However, it is often difficult to reconstruct the 3D structural information from single-shot X-ray diffraction patterns owing to the random orientation of the particles. This report proposes an analysis approach for characterizing defects in nanoparticles using wide-angle X-ray scattering (WAXS) data from free-flying single nanoparticles. The analysis method is based on the concept of correlated X-ray scattering, in which correlations of scattered X-ray are used to recover detailed structural information. WAXS experiments of xenon nanoparticles, or clusters, were conducted at an XFEL facility in Japan by using the SPring-8 Angstrom compact free-electron laser (SACLA). Bragg spots in the recorded single-shot X-ray diffraction patterns showed clear angular correlations, which offered significant structural information on the nanoparticles. The experimental angular correlations were reproduced by numerical simulation in which kinematical theory of diffraction was combined with geometric calculations. We also explain the diffuse scattering intensity as being due to the stacking faults in the xenon clusters

    Following the Birth of a Nanoplasma Produced by an Ultrashort Hard-X-Ray Laser in Xenon Clusters

    Get PDF
    X-ray free-electron lasers (XFELs) made available a new regime of x-ray intensities, revolutionizing the ultrafast structure determination and laying the foundations of the novel field of nonlinear x-ray optics. Although earlier studies revealed nanoplasma formation when an XFEL pulse interacts with any nanometer-scale matter, the formation process itself has never been decrypted and its timescale was unknown. Here we show that time-resolved ion yield measurements combined with a near-infrared laser probe reveal a surprisingly ultrafast population (similar to 12 fs), followed by a slower depopulation (similar to 250 fs) of highly excited states of atomic fragments generated in the process of XFEL-induced nanoplasma formation. Inelastic scattering of Auger electrons and interatomic Coulombic decay are suggested as the mechanisms populating and depopulating, respectively, these excited states. The observed response occurs within the typical x-ray pulse durations and affects x-ray scattering, thus providing key information on the foundations of x-ray imaging with XFELs

    Real-time observation of X-ray-induced intramolecular and interatomic electronic decay in CH2I2

    Get PDF
    The increasing availability of X-ray free-electron lasers (XFELs) has catalyzed the development of single-object structural determination and of structural dynamics tracking in realtime. Disentangling the molecular-level reactions triggered by the interaction with an XFEL pulse is a fundamental step towards developing such applications. Here we report real-time observations of XFEL-induced electronic decay via short-lived transient electronic states in the diiodomethane molecule, using a femtosecond near-infrared probe laser. We determine the lifetimes of the transient states populated during the XFEL-induced Auger cascades and find that multiply charged iodine ions are issued from short-lived (similar to 20 fs) transient states, whereas the singly charged ones originate from significantly longer-lived states (similar to 100 fs). We identify the mechanisms behind these different time scales: contrary to the short-lived transient states which relax by molecular Auger decay, the long-lived ones decay by an interatomic Coulombic decay between two iodine atoms, during the molecular fragmentation

    Antimicrobial-Resistant Enterococcus faecium and Enterococcus faecalis Isolated From Healthy Thoroughbred Racehorses in Japan

    Full text link
    Citation: Eddy Sukmawinata, Wataru Sato, Ryoko Uemura, Takuya Kanda, Kanichi Kusano, Yoshinori Kambayashi, Takashi Sato, Yuhiro Ishikawa, Ryohei Toya, Masuo Sueyoshi, Antimicrobial-Resistant Enterococcus faecium and Enterococcus faecalis Isolated From Healthy Thoroughbred Racehorses in Japan, Journal of Equine Veterinary Science, Volume 94, 2020, 103232, ISSN 0737-0806, https://doi.org/10.1016/j.jevs.2020.10323

    Extended-spectrum β-lactamase-producing Escherichia coli isolated from healthy Thoroughbred racehorses in Japan

    Full text link
    Citation: Eddy SUKMAWINATA, Wataru SATO, Shuya MITOMA, Takuya KANDA, Kanichi KUSANO, Yoshinori KAMBAYASHI, Takashi SATO, Yuhiro ISHIKAWA, Yoshitaka GOTO, Ryoko UEMURA, Masuo SUEYOSHI, Extended-spectrum β-lactamase-producing Escherichia coli isolated from healthy Thoroughbred racehorses in Japan, Journal of Equine Science, 2019, Volume 30, Issue 3, Pages 47-53, Released on J-STAGE October 02, 2019, Online ISSN 1347-7501, Print ISSN 1340-3516, https://doi.org/10.1294/jes.30.4

    Refinement for single-nanoparticle structure determination from low-quality single-shot coherent diffraction data

    Full text link
    With the emergence of X-ray free-electron lasers, it is possible to investigate the structure of nanoscale samples by employing coherent diffractive imaging in the X-ray spectral regime. In this work, we developed a refinement method for structure reconstruction applicable to low-quality coherent diffraction data. The method is based on the gradient search method and considers the missing region of a diffraction pattern and the small number of detected photons. We introduced an initial estimate of the structure in the method to improve the convergence. The present method is applied to an experimental diffraction pattern of an Xe cluster obtained in an X-ray scattering experiment at the SPring-8 Angstrom Compact free-electron LAser (SACLA) facility. It is found that the electron density is successfully reconstructed from the diffraction pattern with a large missing region, with a good initial estimate of the structure. The diffraction pattern calculated from the reconstructed electron density reproduced the observed diffraction pattern well, including the characteristic intensity modulation in each ring. Our refinement method enables structure reconstruction from diffraction patterns under difficulties such as missing areas and low diffraction intensity, and it is potentially applicable to the structure determination of samples that have low scattering power

    Characterizing crystalline defects in single nanoparticles from angular correlations of single-shot diffracted X-rays

    Full text link
    Characterizing and controlling the uniformity of nanoparticles is crucial for their application in science and technology because crystalline defects in the nanoparticles strongly affect their unique properties. Recently, ultra-short and ultra-bright X-ray pulses provided by X-ray free-electron lasers (XFELs) opened up the possibility of structure determination of nanometre-scale matter with Å spatial resolution. However, it is often difficult to reconstruct the 3D structural information from single-shot X-ray diffraction patterns owing to the random orientation of the particles. This report proposes an analysis approach for characterizing defects in nanoparticles using wide-angle X-ray scattering (WAXS) data from free-flying single nanoparticles. The analysis method is based on the concept of correlated X-ray scattering, in which correlations of scattered X-ray are used to recover detailed structural information. WAXS experiments of xenon nanoparticles, or clusters, were conducted at an XFEL facility in Japan by using the SPring-8 Ångstrom compact free-electron laser (SACLA). Bragg spots in the recorded single-shot X-ray diffraction patterns showed clear angular correlations, which offered significant structural information on the nanoparticles. The experimental angular correlations were reproduced by numerical simulation in which kinematical theory of diffraction was combined with geometric calculations. We also explain the diffuse scattering intensity as being due to the stacking faults in the xenon clusters.ISSN:2052-252

    Crystallization kinetics of atomic crystals revealed by a single-shot and single-particle X-ray diffraction experiment

    Full text link
    International audienceCrystallization is a fundamental natural phenomenon and the ubiquitous physical process in materials science for the design of new materials. So far, experimental observations of the structural dynamics in crystallization have been mostly restricted to slow dynamics. We present here an exclusive way to explore the dynamics of crystallization in highly controlled conditions (i.e., in the absence of impurities acting as seeds of the crystallites) as it occurs in vacuum. We have measured the early formation stage of solid Xe nanoparticles nucleated in an expanding supercooled Xe jet by means of an X-ray diffraction experiment with 10-fs X-ray free-electron laser (XFEL) pulses. We found that the structure of Xe nanoparticles is not pure face-centered cubic (fcc), the expected stable phase, but a mixture of fcc and randomly stacked hexagonal close-packed (rhcp) structures. Furthermore, we identified the instantaneous coexistence of the comparably sized fcc and rhcp domains in single Xe nanoparticles. The observations are explained by the scenario of structural aging, in which the nanoparticles initially crystallize in the highly stacking-disordered rhcp phase and the structure later forms the stable fcc phase. The results are reminiscent of analogous observations in hard-sphere systems, indicating the universal role of the stacking-disordered phase in nucleation
    corecore