12 research outputs found

    Novel constructive method for the quantum dimer model in spin-1/2 Heisenberg antiferromagnets with frustration on a diamond-like-decorated square lattice

    No full text
    We study spin-1/2 Heisenberg antiferromagnets on a diamond-like-decorated square lattice. The diamond-like-decorated square lattice is a lattice in which the bonds in a square lattice are replaced with diamond units. The diamond unit has two types of antiferromagnetic exchange interactions, and the ratio λ of the diagonal bond strength to that of the other four edges controls the frustration strength. For 0.974 0) and repulsive interaction between dimers (v > 0). This suggests the possibility of realizing the resonating valence bond (RVB) state because the RVB state is obtained at v = |t|, which is known as the RK point

    Oligomerization of Ca2+/calmodulin-dependent protein kinase kinase

    No full text
    Ca2+/calmodulin-dependent protein kinase kinases (CaMKKα and β) are regulatory kinases for multiple downstream kinases, including CaMKI, CaMKIV, PKB/Akt, and AMP-activated protein kinase (AMPK) through phosphorylation of each activation-loop Thr residue. In this report, we biochemically characterize the oligomeric structure of CaMKK isoforms through a heterologous expression system using COS-7 cells. Oligomerization of CaMKK isoforms was readily observed by treating CaMKK transfected cells with cell membrane permeable crosslinkers. In addition, His-tagged CaMKKα (His–CaMKKα) pulled down with FLAG-tagged CaMKKα (FLAG–CaMKKα) in transfected cells. The oligomerization of CaMKKα was confirmed by the fact that GST–CaMKKα/His–CaMKKα complex from transiently expressed COS-7 cells extracts was purified to near homogeneity by the sequential chromatography using glutathione-sepharose/Nisepharose and was observed in a Ca2+/CaM-independent manner by reciprocal pulldown assay, suggesting the direct interaction between monomeric CaMKKα. Furthermore, the His-CaMKKα kinase-dead mutant (D293A) complexed with FLAG–CaMKKα exhibited significant CaMKK activity, indicating the active CaMKKα multimeric complex. Collectively, these results suggest that CaMKKα can self-associate in the cells, constituting a catalytically active oligomer that might be important for the efficient activation of CaMKK-mediated intracellular signaling
    corecore