360 research outputs found

    Semantic Role Labeling with Associated Memory Network

    Full text link
    Semantic role labeling (SRL) is a task to recognize all the predicate-argument pairs of a sentence, which has been in a performance improvement bottleneck after a series of latest works were presented. This paper proposes a novel syntax-agnostic SRL model enhanced by the proposed associated memory network (AMN), which makes use of inter-sentence attention of label-known associated sentences as a kind of memory to further enhance dependency-based SRL. In detail, we use sentences and their labels from train dataset as an associated memory cue to help label the target sentence. Furthermore, we compare several associated sentences selecting strategies and label merging methods in AMN to find and utilize the label of associated sentences while attending them. By leveraging the attentive memory from known training data, Our full model reaches state-of-the-art on CoNLL-2009 benchmark datasets for syntax-agnostic setting, showing a new effective research line of SRL enhancement other than exploiting external resources such as well pre-trained language models.Comment: Published at NAACL 2019; This is camera Ready version; Code is available at https://github.com/Frozenmad/AMN_SR

    Optimal Power Flow in Hybrid AC and Multi-terminal HVDC Networks with Offshore Wind Farm Integration Based on Semidefinite Programming

    Full text link
    Multi-terminal high voltage direct current (MTHVDC) technology is a promising technology for the offshore wind farm integration, which requires the new control and operation scheme. Therefore, the optimal power flow problem for this system is important to achieve the optimal economic operation. In this paper, convex relaxation model based on semidefinite programming for the MT-HVDC system considering DC/DC converters is proposed to solve the optimal power flow problem. A hybrid AC and MT-HVDC system for offshore wind farm integration is used for the test. The simulation results validate the effectiveness of the proposed model and guarantee that the global optimum solution is achieved.Comment: Accepted in IEEE/PES ISGT Asia 2019 conference (May, 2019), Chengdu, Chin

    Chaotic Phase-Coded Waveforms with Space-Time Complementary Coding for MIMO Radar Applications

    Get PDF
    A framework for designing orthogonal chaotic phase-coded waveforms with space-time complementary coding (STCC) is proposed for multiple-input multiple-output (MIMO) radar applications. The phase-coded waveform set to be transmitted is generated with an arbitrary family size and an arbitrary code length by using chaotic sequences. Due to the properties of chaos, this chaotic waveform set has many advantages in performance, such as anti-interference and low probability of intercept. However, it cannot be directly exploited due to the high range sidelobes, mutual interferences, and Doppler intolerance. In order to widely implement it in practice, we optimize the chaotic phase-coded waveform set from two aspects. Firstly, the autocorrelation property of the waveform is improved by transmitting complementary chaotic phase-coded waveforms, and an adaptive clonal selection algorithm is utilized to optimize a pair of complementary chaotic phase-coded pulses. Secondly, the crosscorrelation among different waveforms is eliminated by implementing space-time coding into the complementary pulses. Moreover, to enhance the detection ability for moving targets in MIMO radars, a method of weighting different pulses by a null space vector is utilized at the receiver to compensate the interpulse Doppler phase shift and accumulate different pulses coherently. Simulation results demonstrate the efficiency of our proposed method

    Chaotic Phase-Coded Waveforms with Space-Time Complementary Coding for MIMO Radar Applications

    Get PDF
    A framework for designing orthogonal chaotic phase-coded waveforms with space-time complementary coding (STCC) is proposed for multiple-input multiple-output (MIMO) radar applications. The phase-coded waveform set to be transmitted is generated with an arbitrary family size and an arbitrary code length by using chaotic sequences. Due to the properties of chaos, this chaotic waveform set has many advantages in performance, such as anti-interference and low probability of intercept. However, it cannot be directly exploited due to the high range sidelobes, mutual interferences, and Doppler intolerance. In order to widely implement it in practice, we optimize the chaotic phase-coded waveform set from two aspects. Firstly, the autocorrelation property of the waveform is improved by transmitting complementary chaotic phase-coded waveforms, and an adaptive clonal selection algorithm is utilized to optimize a pair of complementary chaotic phase-coded pulses. Secondly, the crosscorrelation among different waveforms is eliminated by implementing space-time coding into the complementary pulses. Moreover, to enhance the detection ability for moving targets in MIMO radars, a method of weighting different pulses by a null space vector is utilized at the receiver to compensate the interpulse Doppler phase shift and accumulate different pulses coherently. Simulation results demonstrate the efficiency of our proposed method
    • …
    corecore