413 research outputs found

    Distinct responses of planktonic foraminiferal B/Ca to dissolution on seafloor

    Get PDF
    We have measured B/Ca in four core-top planktonic foraminiferal species (Globigerinoides ruber (white), Globigerinoides sacculifer (without final sac-like chamber), Neogloboquadrina dutertrei, and Pulleniatina obliquiloculata) from three depth transects (the Caribbean Sea, the southwestern Indian Ocean, and the Ontong Java Plateau) to evaluate the effect of dissolution on planktonic foraminiferal B/Ca. At each transect, G. ruber (w) and G. sacculifer (w/o sac) show decreasing B/Ca with increasing water depth. This decrease in B/Ca is accompanied with decreases in shell weights, Mg/Ca, and bottom water calcite saturation state. This indicates a postdepositional dissolution effect on B/Ca in these two species. The strong correlation observed between changes in B/Ca and bottom water calcite saturation state offers an approach to correcting for the dissolution bias. By contrast, B/Ca in N. dutertrei and P. obliquiloculata remains unchanged along depth transects, although shell weights and Mg/Ca display significant declines. Overall, our core-top results suggest species-specific dissolution effects on B/Ca in different planktonic foraminiferal species

    Autonomy 2.0: The Quest for Economies of Scale

    Full text link
    With the advancement of robotics and AI technologies in the past decade, we have now entered the age of autonomous machines. In this new age of information technology, autonomous machines, such as service robots, autonomous drones, delivery robots, and autonomous vehicles, rather than humans, will provide services. In this article, through examining the technical challenges and economic impact of the digital economy, we argue that scalability is both highly necessary from a technical perspective and significantly advantageous from an economic perspective, thus is the key for the autonomy industry to achieve its full potential. Nonetheless, the current development paradigm, dubbed Autonomy 1.0, scales with the number of engineers, instead of with the amount of data or compute resources, hence preventing the autonomy industry to fully benefit from the economies of scale, especially the exponentially cheapening compute cost and the explosion of available data. We further analyze the key scalability blockers and explain how a new development paradigm, dubbed Autonomy 2.0, can address these problems to greatly boost the autonomy industry

    Simulating the Kibble-Zurek mechanism of the Ising model with a superconducting qubit system

    Get PDF
    The Kibble-Zurek mechanism (KZM) predicts the density of topological defects produced in the dynamical processes of phase transitions in systems ranging from cosmology to condensed matter and quantum materials. The similarity between KZM and the Landau-Zener transition (LZT), which is a standard tool to describe the dynamics of some non-equilibrium physics in contemporary physics, is being extensively exploited. Here we demonstrate the equivalence between KZM in the Ising model and LZT in a superconducting qubit system. We develop a time-resolved approach to study quantum dynamics of LZT with nano-second resolution. By using this technique, we simulate the key features of KZM in the Ising model with LZT, e.g., the boundary between the adiabatic and impulse regions, the freeze-out phenomenon in the impulse region, especially, the scaling law of the excited state population as the square root of the quenching rate. Our results supply the experimental evidence of the close connection between KZM and LZT, two textbook paradigms to study the dynamics of the non-equilibrium phenomena.Comment: Title changed, authors added, and some experimental data update
    • ā€¦
    corecore