9 research outputs found

    Uncovering precision phenotype-biomarker associations in traumatic brain injury using topological data analysis

    Get PDF
    Background: Traumatic brain injury (TBI) is a complex disorder that is traditionally stratified based on clinical signs and symptoms. Recent imaging and molecular biomarker innovations provide unprecedented opportunities for improved TBI precision medicine, incorporating patho-anatomical and molecular mechanisms. Complete integration of these diverse data for TBI diagnosis and patient stratification remains an unmet challenge. Methods and findings: The Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Pilot multicenter study enrolled 586 acute TBI patients and collected diverse common data elements (TBI-CDEs) across the study population, including imaging, genetics, and clinical outcomes. We then applied topology-based data-driven discovery to identify natural subgroups of patients, based on the TBI-CDEs collected. Our hypothesis was two-fold: 1) A machine learning tool known as topological data analysis (TDA) would reveal data-driven patterns in patient outcomes to identify candidate biomarkers of recovery, and 2) TDA-identified biomarkers would significantly predict patient outcome recovery after TBI using more traditional methods of univariate statistical tests. TDA algorithms organized and mapped the data of TBI patients in multidimensional space, identifying a subset of mild TBI patients with a specific multivariate phenotype associated with unfavorable outcome at 3 and 6 months after injury. Further analyses revealed that this patient subset had high rates of post-traumatic stress disorder (PTSD), and enrichment in several distinct genetic polymorphisms associated with cellular responses to stress and DNA damage (PARP1), and in striatal dopamine processing (ANKK1, COMT, DRD2). Conclusions: TDA identified a unique diagnostic subgroup of patients with unfavorable outcome after mild TBI that were significantly predicted by the presence of specific genetic polymorphisms. Machine learning methods such as TDA may provide a robust method for patient stratification and treatment planning targeting identified biomarkers in future clinical trials in TBI patients

    Clinical predictors of 3- and 6-month outcome for mild traumatic brain injury patients with a negative head CT scan in the emergency department: A TRACK-TBI pilot study

    Get PDF
    Aconsiderable subset of mild traumatic brain injury (mTBI) patients fail to return to baseline functional status at or beyond 3 months postinjury. Identifying at-risk patients for poor outcome in the emergency department (ED) may improve surveillance strategies and referral to care. Subjects with mTBI (Glasgow Coma Scale 13–15) and negative ED initial head CT < 24 h of injury, completing 3- or 6-month functional outcome (Glasgow Outcome Scale-Extended; GOSE), were extracted from the prospective, multicenter Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Pilot study. Outcomes were dichotomized to full recovery (GOSE = 8) vs functional deficits (GOSE < 8). Univariate predictors with p < 0.10 were considered for multivariable regression. Adjusted odds ratios (AOR) were reported for outcome predictors. Significance was assessed at p < 0.05. Subjects who completed GOSE at 3- and 6-month were 211 (GOSE < 8: 60%) and 185 (GOSE < 8: 65%). Risk factors for 6-month GOSE < 8 included less education (AOR = 0.85 per-year increase, 95% CI: (0.74–0.98)), prior psychiatric history (AOR = 3.75 (1.73–8.12)), Asian/minority race (American Indian/Alaskan/Hawaiian/Pacific Islander) (AOR = 23.99 (2.93–196.84)), and Hispanic ethnicity (AOR = 3.48 (1.29–9.37)). Risk factors for 3-month GOSE < 8 were similar with the addition of injury by assault predicting poorer outcome (AOR = 3.53 (1.17–10.63)). In mTBI patients seen in urban trauma center EDs with negative CT, education, injury by assault, Asian/minority race, and prior psychiatric history emerged as risk factors for prolonged disability

    Apolipoprotein E epsilon 4 (APOE-ε4) genotype is associated with decreased 6-month verbal memory performance after mild traumatic brain injury

    Get PDF
    Introduction: The apolipoprotein E (APOE) ε4 allele associates with memory impairment in neurodegenerative diseases. Its association with memory after mild traumatic brain injury (mTBI) is unclear. Methods: mTBI patients (Glasgow Coma Scale score 13–15, no neurosurgical intervention, extracranial Abbreviated Injury Scale score ≤1) aged ≥18 years with APOE genotyping results were extracted from the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI Pilot) study. Cohorts determined by APOE-ε4(+/−) were assessed for associations with 6-month verbal memory, measured by California Verbal Learning Test, Second Edition (CVLT-II) subscales: Immediate Recall Trials 1–5 (IRT), Short-Delay Free Recall (SDFR), Short-Delay Cued Recall (SDCR), Long-Delay F

    Pre-injury Comorbidities Are Associated With Functional Impairment and Post-concussive Symptoms at 3-and 6-Months After Mild Traumatic Brain Injury: A TRACK-TBI Study

    Get PDF
    Introduction: Over 70% of traumatic brain injuries (TBI) are classified as mild (mTBI), which present heterogeneously. Associations between pre-injury comorbidities and outcomes are not well-understood, and understanding their status as risk factors may improve mTBI management and prognostication. Methods: mTBI subjects (GCS 13–15) from TRACK-TBI Pilot completing 3- and 6-month functional [Glasgow Outcome Scale-Extended (GOSE)] and post-concussive outcomes [Acute Concussion Evaluation (ACE) physical/cognitive/sleep/emotional subdomains] were extracted. Pre-injury comorbidities >10% incidence were included in regressions for functional disability (GOSE ≤ 6) and post-concussive symptoms by subdomain. Odds ratios (OR) and mean differences (B) were reported. Significance was assessed at p < 0.0083 (Bonferroni correction). Results: In 260 subjects sustaining blunt mTBI, mean age was 44.0-years and 70.4% were male. Baseline comorbidities >10% incidence included psychiatric-30.0%, cardiac (hypertension)-23.8%, cardiac (structural/valvular/ischemic)-20.4%, gastrointestinal15.8%, pulmonary-15.0%, and headache/migraine-11.5%. At 3- and 6-months separately, 30.8% had GOSE ≤ 6. At 3-months, psychiatric (GOSE ≤ 6: OR = 2.75, 95% CI [1.44–5.27]; ACE-physical: B = 1.06 [0.38–1.73]; ACE-cognitive: B = 0.72 [0.26–1.17]; ACE-sleep: B = 0.46 [0.17–0.75]; ACE-emotional: B = 0.64 [0.25–1.03]), headache/migraine (GOSE ≤ 6: OR = 4.10 [1.67–10.07]; ACE-sleep: B = 0.57 [0.15–1.00]; ACE-emotional: B = 0.92 [0.35–1.49]), and gastrointestinal history (ACE-physical: B = 1.25 [0.41–2.10]) were multivariable predictors of worse outcomes. At 6-months, psychiatric (GOSE ≤ 6: OR = 2.57 [1.38–4.77]; ACE-physical: B = 1.38 [0.68–2.09]; ACE-cognitive: B = 0.74 [0.28–1.20]; ACE-sleep: B = 0.51 [0.20–0.83]; ACE-emotional: B = 0.93 [0.53–1.33]), and headache/migraine history (ACE-physical: B = 1.81 [0.79–2.84]) predicted worse outcomes. Conclusions: Pre-injury psychiat

    COMT Val158Met polymorphism is associated with post-traumatic stress disorder and functional outcome following mild traumatic brain injury

    No full text
    Mild traumatic brain injury (mTBI) results in variable clinical trajectories and outcomes. The source of variability remains unclear, but may involve genetic variations, such as single nucleotide polymorphisms (SNPs). A SNP in catechol-o-methyltransferase (COMT) is suggested to influence development of post-traumatic stress disorder (PTSD), but its role in TBI remains unclear. Here, we utilize the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI Pilot) study to investigate whether the COMT Val158Met polymorphism is associated with PTSD and global functional outcome as measured by the PTSD Checklist – Civilian Version and Glasgow Outcome Scale Extended (GOSE), respectively. Results in 93 predominately Caucasian subjects with mTBI show that the COMT Met158 allele is associated with lower incidence of PTSD (univariate odds ratio (OR) of 0.25, 95% CI [0.09–0.69]) and higher GOSE scores (univariate OR 2.87, 95% CI [1.20–6.86]) 6-months following injury. The COMT Val158Met genotype and PTSD association persists after controlling for race (multivariable OR of 0.29, 95% CI [0.10–0.83]) and pre-existing psychiatric disorders/substance abuse (multivariable OR of 0.32, 95% CI [0.11–0.97]). PTSD emerged as a strong predictor of poorer outcome on GOSE (multivariable OR 0.09, 95% CI [0.03–0.26]), which persists after controlling for age, GCS, and race. When accounting for PTSD in multivariable analysis, the association of COMT genotype and GOSE did not remain significant (multivariable OR 1.73, 95% CI [0.69–4.35]). Whether COMT genotype indirectly influences global functional outcome through PTSD remains to be determined and larger studies in more diverse populations are needed to confirm these findings

    Plasma Anti-Glial Fibrillary Acidic Protein Autoantibody Levels during the Acute and Chronic Phases of Traumatic Brain Injury: A Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot Study

    No full text
    We described recently a subacute serum autoantibody response toward glial fibrillary acidic protein (GFAP) and its breakdown products 5-10 days after severe traumatic brain injury (TBI). Here, we expanded our anti-GFAP autoantibody (AutoAb[GFAP]) investigation to the multicenter observational study Transforming Research and Clinical Knowledge in TBI Pilot (TRACK-TBI Pilot) to cover the full spectrum of TBI (Glasgow Coma Scale 3-15) by using acute (<24 h) plasma samples from 196 patients with acute TBI admitted to three Level I trauma centers, and a second cohort of 21 participants with chronic TBI admitted to inpatient TBI rehabilitation. We find that acute patients self-reporting previous TBI with loss of consciousness (LOC) (n = 43) had higher day 1 AutoAb[GFAP] (mean ± standard error: 9.11 ± 1.42; n = 43) than healthy controls (2.90 ± 0.92; n = 16; p = 0.032) and acute patients reporting no previous TBI (2.97 ± 0.37; n = 106; p < 0.001), but not acute patients reporting previous TBI without LOC (8.01 ± 1.80; n = 47; p = 0.906)

    DRD2 C957T polymorphism is associated with improved 6-month verbal learning following traumatic brain injury

    No full text
    Traumatic brain injury (TBI) often leads to heterogeneous clinical outcomes, which may be influenced by genetic variation. A single-nucleotide polymorphism (SNP) in the dopamine D2 receptor (DRD2) may influence cognitive deficits following TBI. However, part of the association with DRD2 has been attributed to genetic variability within the adjacent ankyrin repeat and kinase domain containing 1 protein (ANKK1). Here, we utilize the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI Pilot) study to investigate whether a novel DRD2 C957T polymorphism (rs6277) influences outcome on a cognitive battery at 6 months following TBI—California Verbal Learning Test (CVLT-II), Wechsler Adult Intelligence Test Processing Speed Index Composite Score (WAIS-PSI), and Trail Making Test (TMT). Results in 128 Caucasian subjects show that the rs6277 T-allele associates with better verbal learning and recall on CVLT-II Trials 1–5 (T-allele carrier 52.8 ± 1.3 points, C/C 47.9 ± 1.7 points; mean increase 4.9 points, 95% confidence interval [0.9 to 8.8]; p = 0.018), Short-Delay Free Recall (T-carrier 10.9 ± 0.4 points, C/C 9.7 ± 0.5 points; mean increase 1.2 points [0.1 to 2.5]; p = 0.046), and Long-Delay Free Recall (T-carrier 11.5 ± 0.4 points, C/C 10.2 ± 0.5 points; mean increase 1.3 points [0.1 to 2.5]; p = 0.041) after adjusting for age, education years, Glasgow Coma Scale, presence of acute intracranial pathology on head computed tomography scan, and genotype of the ANKK1 SNP rs1800497 using multivariable regression. No association was found between DRD2 C947T and non-verbal processing speed (WAIS-PSI) or mental flexibility (TMT) at 6 months. Hence, DRD2 C947T (rs6277) may be associated with better performance on select cognitive domains independent of ANKK1 following TBI
    corecore