45 research outputs found

    Rate-Splitting with Hybrid Messages: DoF Analysis of the Two-User MIMO Broadcast Channel with Imperfect CSIT

    Full text link
    Most of the existing research on degrees-of-freedom (DoF) with imperfect channel state information at the transmitter (CSIT) assume the messages are private, which may not reflect reality as the two receivers can request the same content. To overcome this limitation, we consider hybrid private and common messages. We characterize the optimal DoF region for the two-user multiple-input multiple-output (MIMO) broadcast channel with hybrid messages and imperfect CSIT. We establish a three-step procedure for the DoF converse to exploit the utmost possible relaxation. For the DoF achievability, since the DoF region has a specific three-dimensional structure w.r.t. antenna configurations and CSIT qualities, by dividing CSIT qualities into cases, we check the existence of corner point solutions, and then design a hybrid messages-aware rate-splitting scheme to achieve them. Besides, we show that to achieve the strictly positive corner points, it is unnecessary to split the private messages into unicast and multicast parts because the allocated power for the multicast part should be zero. This implies that adding a common message can mitigate the rate-splitting complexity of private messages.Comment: 32page

    Application fruit tree hole storage brick fertilizer is beneficial to increase the nitrogen utilization of grape under subsurface drip irrigation

    Get PDF
    It is very important to promote plant growth and decrease the nitrogen leaching in soil, to improve nitrogen (N) utilization efficiency. In this experiment, we designed a new fertilization strategy, fruit tree hole storage brick (FTHSB) application under subsurface drip irrigation, to characterise the effects of FTHSB addition on N absorption and utilization in grapes. Three treatments were set in this study, including subsurface drip irrigation (CK) control, fruit tree hole storage brick A (T1) treatment, and fruit tree hole storage brick B (T2) treatment. Results showed that the pore number and size of FTHSB A were significantly higher than FTHSB B. Compared with CK, T1 and T2 treatments significantly increased the biomass of different organs of grape, N utilization and 15N content in the roots, stems and leaves, along with more prominent promotion at T1 treatment. When the soil depth was 15–30 cm, the FTHSB application significantly increased the soil 15N content. But when the soil depth was 30–45 cm, it reduced the soil 15N content greatly. T1 and T2 treatments obviously increased the activities of nitrite reductase (NR) and glutamine synthetase (GS) in grape leaves, also the urease activity(UR) in 30 cm of soil. Our findings suggest that FTHSB promoted plant N utilization by reducing N loss in soil and increasing the enzyme activity related to nitrogen metabolism. In addition, this study showed that FTHSB A application was more effective than FTHSB B in improving nitrogen utilization in grapes

    Biocontrol of Sugarcane Smut Disease by Interference of Fungal Sexual Mating and Hyphal Growth Using a Bacterial Isolate

    Get PDF
    Sugarcane smut is a fungal disease caused by Sporisorium scitamineum, which can cause severe economic losses in sugarcane industry. The infection depends on the mating of bipolar sporida to form a dikaryon and develops into hyphae to penetrate the meristematic tissue of sugarcane. In this study, we set to isolate bacterial strains capable of blocking the fungal mating and evaluate their potential in control of sugarcane smut disease. A bacterial isolate ST4 from rhizosphere displayed potent inhibitory activity against the mating of S. scitamineum bipolar sporida and was selected for further study. Phylogenetic analyses and biochemical characterization showed that the isolate was most similar to Pseudomonas guariconensis. Methanol extracts from minimum and potato dextrose agar (PDA) agar medium, on which strain ST4 has grown, showed strong inhibitory activity on the sexual mating of S. scitamineum sporida, without killing the haploid cells MAT-1 or MAT-2. Further analysis showed that only glucose, but not sucrose, maltose, and fructose, could support strain ST4 to produce antagonistic chemicals. Consistent with the above findings, greenhouse trials showed that addition of 2% glucose to the bacterial inoculum significantly increased the strain ST4 biocontrol efficiency against sugarcane smut disease by 77% than the inoculum without glucose. The results from this study depict a new strategy to screen for biocontrol agents for control and prevention of the sugarcane smut disease

    Effect of Mg substitution for La on microstructure, hydrogen storage and electrochemical properties of La1−xMgxNi3.5 (x=0.20, 0.23, 0.25 at%) alloys

    Get PDF
    The effect of Mg substitution for La on microstructure, hydrogen storage and electrochemical properties of the annealed La1−xMgxNi3.5 (x=0.20, 0.23, 0.25 at%) alloys have been studied. All the samples were mainly composed of (LaMg)2Ni7, (LaMg)Ni3, and LaNi5 phases. Mg substitution for La changed the phase abundance, but did not change the constitution of all phases, which is confirmed by the results of back-scattered SEM images and EDS analysis. The P–C isotherms indicated that the La1−xMgxNi3.5 alloys reversibly absorbed and desorbed hydrogen smoothly at 298 K. The hydrogen absorption cyclic stabilities of La0.77Mg0.23Ni3.5 alloy after 5 hydrogen absorption/desorption cycles reached the maximum values of 91.9% and 96.0% at 298 K and 323 K, respectively. The hydrogen desorption capacity and plateau pressure for the La0.77Mg0.23Ni3.5 alloy reached the maximum values of 1.055 H/M and 0.074 MPa, respectively. The desorption capacities of La0.77Mg0.23Ni3.5 reached 0.193 H/M and 0.565 H/M in the first minute at 298 K and 323 K, respectively. Electrochemical property measurement indicated that La1−xMgxNi3.5 (x=0.20, 0.23, 0.25 at%) alloys possessed excellent activation capability and were completely activated within 3 cycles. Discharge capacities of La1−xMgxNi3.5 alloys reached 378.2 mA h/g (x=0.20 at%), 342.7 mA h/g (x=0.23 at%), and 369.6 mA h/g (x=0.25 at%), respectively. Moreover, energy density of La0.77Mg0.23Ni3.5 alloy was much larger than that of La0.80Mg0.20Ni3.5 alloy and nearly approaches the maximum value of La0.75Mg0.25Ni3.5. Thus, the La0.77Mg0.23Ni3.5 alloy exhibits optimum comprehensive properties of hydrogen storage and electrochemistry

    Expression of PAPP-A2 and IGF Pathway-Related Proteins in the Hip Joint of Normal Rat and Those with Developmental Dysplasia of the Hip

    No full text
    Developmental dysplasia of the hip (DDH) is one of the major causes of child disability and early osteoarthritis. Genetic factors play an important role, but which still remain unclear. Pregnancy-associated plasma protein-A2 (PAPP-A2), a special hydrolase of insulin-like growth factor binding protein-5 (IGFBP-5), has been confirmed to be associated with DDH by previous studies. The aim of this study was firstly, to investigate the expression of PAPP-A2 and insulin-like growth factor (IGF) pathway-related proteins in normal rat’s hip joints; secondly, to compare the variations of those proteins between DDH model rats and normal ones. The DDH model was established by swaddling the rat’s hind legs in hip adduction and extension position. The hip joints were collected for expression study of fetal rats, normal newborn rats, and DDH model rats. Positive expression of PAPP-A2 and IGF pathway-related proteins was observed in all the hip joints of growing-stage rats. Ultimately, IGF1 was downregulated; insulin-like growth factor 1 receptor (IGF1R) showed an opposite trend in DDH rats when compared with normal group. The PAPP-A2 and IGF pathway-associated proteins may also be involved in the development of the rat’s hip joint, which bring the foundation for further revealing the pathogenic mechanism of DDH

    Facile Preparation and Promising Hydrothermal Stability of Spherical γ-Alumina Support with High Specific Surface Area

    No full text
    It is of great importance to develop a spherical γ-alumina support with high hydrothermal stability to be used in platinum reforming catalyst processes. The porous pseudo-boehmite powder with a high surface area was first synthesized via a simple separate nucleation and aging steps method, and was then used as a precursor to produce a spherical γ-Al2O3 support via an oil–ammonia column method. The as-synthesized pseudo-boehmite has a substantially greater specific surface area of 336.0 m2·g−1 in comparison with the commercial Sasol boehmite powder (293.0 m2·g−1) from Sasol Chemicals. In addition, the as-prepared spherical γ-Al2O3 support derived from the as-synthesized pseudo-boehmite also possesses a higher specific surface area of 280.0 m2·g−1 compared to the corresponding Sasol sample. Moreover, the as-prepared spherical γ-Al2O3 balls demonstrate a much higher specific surface area of 185.0 m2·g−1 compared with the Sasol sample of 142.0 m2·g−1 after hydrothermal tests at 600 °C, suggesting its promising application in the chemical industry

    Research Progress and Direction of Novel Organelle—Migrasomes

    No full text
    Migrasomes are organelles that are similar in structure to pomegranates, up to 3 μm in diameter, and contain small vesicles with a diameter of 50–100 nm. These membranous organelles grow at the intersections or tips of retracting fibers at the back of migrating cells. The process by which cells release migrasomes and their contents outside the cell is called migracytosis. The signal molecules are packaged in the migrasomes and released to the designated location by migrasomes to activate the surrounding cells. Finally, the migrasomes complete the entire process of information transmission. In this sense, migrasomes integrate time, space, and specific chemical information, which are essential for regulating physiological processes such as embryonic development and tumor invasion and migration. In this review, the current research progress of migrasomes, including the discovery of migrasomes and migracytosis, the structure of migrasomes, and the distribution and functions of migrasomes is discussed. The migratory marker protein TSPAN4 is highly expressed in various cancers and is associated with cancer invasion and migration. Therefore, there is still much research space for the pathogenesis of migratory bodies and cancer. This review also makes bold predictions and prospects for the research directions of the combination of migrasomes and clinical applications

    Regulating the Expression of HIF-1α or lncRNA: Potential Directions for Cancer Therapy

    No full text
    Previous studies have shown that tumors under a hypoxic environment can induce an important hypoxia-responsive element, hypoxia-induced factor-1α (HIF-1α), which can increase tumor migration, invasion, and metastatic ability by promoting epithelial-to-mesenchymal transition (EMT) in tumor cells. Currently, with the deeper knowledge of long noncoding RNAs (lncRNAs), more and more functions of lncRNAs have been discovered. HIF-1α can regulate hypoxia-responsive lncRNAs under hypoxic conditions, and changes in the expression level of lncRNAs can regulate the production of EMT transcription factors and signaling pathway transduction, thus promoting EMT progress. In conclusion, this review summarizes the regulation of the EMT process by HIF-1α and lncRNAs and discusses their relationship with tumorigenesis. Since HIF-1α plays an important role in tumor progression, we also summarize the current drugs that inhibit tumor progression by modulating HIF-1α
    corecore