2 research outputs found

    Water Purification Capacity of the Constructed Wetland to Micro-Pollution Water Source —— a Case Study in Jiaxing

    No full text
    Constructed wetlands are commonly applied to improve and maintain water quality of micro-polluted water sources as a feasible and cost-effective technique. However, the purification capacity of the constructed wetland for micro-polluted water was lacking of understanding. This study collected the turbidity, ammonia nitrogen (NH3-N), nitrite nitrogen (NO2-N), total nitrogen (TN), Fe, Mn, total phosphorus (TP), permanganate index (CODMn), dissolved oxygen (DO), and chemical oxygen demand (COD) at the water inlet and outlet of Guanjinggang Wetland in Jiaxing City from 2019 to 2021. The comparisons among the pollution indicators showed that the wetland reduced the pollutions and slowed down the fluctuations of pollution indicators, except for Do, TN and COD. The removal rates are different due to the causes of pollution indicators. The partial regression analysis to different influencing factors showed the water temperature were the main influencing factor to the turbidity, NH3-N, Fe with the partial correlation of 0.447, -0.631, 0.510, respectively. Precipitation showed the highest influence on Mn with the partial correlation of 0.323. Flow showed highest influence on COD with the partial correlation of -0.339. Both flow and water temperature were the highest influence factors on No2-N, CODMn, Do and TN. However, water purification agent was not the main influence factor on any pollution indicators. The research results are conducive to improving the understanding of water security in the Yangtze River Delta region

    Intensive cycles of neoadjuvant camrelizumab combined with chemotherapy in locally advanced esophageal squamous cell carcinoma: a single-arm, phase II trial

    No full text
    Abstract Background Two cycles of neoadjuvant PD-1 blockade plus chemotherapy induced favorable pathological response and tolerant toxicity in patients with locally advanced esophageal squamous cell carcinoma (ESCC). However, approximately 25% of patients relapsed within 1 year after surgery, indicating that a short course of treatment may not be sufficient. Therefore, exploring the effects of intensive treatment is needed for optimal clinical outcomes. Methods Locally advanced ESCC patients were administered three cycles of camrelizumab plus nab-paclitaxel and capecitabine, followed by thoracoscopic esophagectomy. The primary endpoint was pathologic response. Secondary endpoints included safety, feasibility, radiologic response, survival outcomes, and immunologic/genomic correlates of efficacy. Results Forty-seven patients were enrolled in the study. Forty-two patients received surgery, and R0 resection was achieved in all cases. The complete and major pathological response rates were 33.3% and 64.3%, respectively, and the objective response rate was 80.0%. Three cycles of treatment significantly improved T down-staging compared to two cycles (P = 0.03). The most common treatment-related adverse events were grades 1–2, and no surgical delay was reported. With a median follow-up of 24.3 months, the 1-year disease-free survival and overall survival rates were both 97.6%, and the 2-year disease-free survival and overall survival rates were 92.3% and 97.6%, respectively. Three patients experienced disease recurrence or metastasis ranging from 12.5 to 25.8 months after surgery, and one patient died 6 months after surgery due to cardiovascular disease. Neither programmed death-ligand 1 expression nor tumor mutational burden was associated with pathological response. An increased infiltration of CD56 dim natural killer cells in the pretreatment tumor was correlated with better pathological response in the primary tumor. Conclusions It seems probable that intensive cycles of neoadjuvant camrelizumab plus nab-paclitaxel and capecitabine increased tumor regression and improved survival outcomes. Randomized controlled trials with larger sample sizes and longer follow-up periods are needed to validate these findings. Trial registration Chinese Clinical Trial Registry, ChiCTR2000029807, Registered February 14, 2020, https://www.chictr.org.cn/showproj.aspx?proj=49459
    corecore