77 research outputs found

    Family association study between INSR gene polymorphisms and PCOS in Han Chinese

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Polycystic ovary syndrome (PCOS) is a complex disease having both genetic and environmental components. Candidate genes with insulin metabolism have been hypothesized to be involved in the etiology of this syndrome. In the present study, we investigated the genetic association between polymorphisms in the insulin receptor (INSR) gene and PCOS.</p> <p>Methods</p> <p>A total of 260 family trios were recruited and performed a family-based analysis to assess linkage and association between four single nucleotide polymorphisms (SNPs) (rs1799817, rs2059807, rs8108622 and rs10500204) of INSR gene and PCOS.</p> <p>Results</p> <p>Using the transmission disequilibrium test (TDT), we failed to find that rs1799817 (p = 0.486), rs2059807 (p = 0.195), rs8108622 (p = 0.866) and rs10500204 (p = 1.0) were significantly overtransmitted to PCOS offspring from their parents.</p> <p>Conclusion</p> <p>No significant evidence of association or linkage was found in the four tested markers, indicating that our family samples did not support susceptibility of the INSR gene to PCOS.</p

    What influences Metro station ridership in China? Insights from Nanjing

    No full text
    China is undertaking one of the most ambitious rail expansions in the world. This paper investigated the impacts of factors on ridership within Metro stations’ pedestrian catchment area (PCA) in Nanjing, China. Direct ridership model was developed to explain the ridership at 55 Metro stations using a Geographic Information System (GIS) and multiple regression analysis. Independent variables included factors measuring land use, external connectivity, intermodal connection, and station context. Six variables were found to be significantly associated with Metro station ridership at the 0.05 level: population, business/office floor area, CBD dummy variable, number of education buildings, entertainment venues and shop centers. Five variables were proved to be related to station ridership at the 0.01 significance level: employment, road length, feeder bus lines, bicycle park-and-ride (P&R) spaces, and transfer dummy variable. In particular, CBD dummy variable, the number of education buildings, entertainment venues and shop centers, and bicycle P&R spaces were found to be significantly connected to Metro station ridership in the present study. The results not only confirm some findings from previous studies but also show distinct differences regarding some variables specific to the Chinese context

    Analysis of Metro ridership at station level and station-to-station level in Nanjing: an approach based on direct demand models

    No full text
    A growing base of research adopts direct demand models to reveal associations between transit ridership and influence factors in recent years. This study is designed to investigate the factors affecting rail transit ridership at both station level and station-to-station level by adopting multiple regression model and multiplicative model respectively, specifically using an implemented Metro system in Nanjing, China, where Metro implementation is on the rise. Independent variables include factors measuring land-use mix, intermodal connection, station context, and travel impedance. Multiple regression model proves 11 variables are significantly associated with Metro ridership at station level: population, employment, business/office floor area, CBD dummy variable, number of major educational sites, entertainment venues and shopping centers, road length, feeder bus lines, bicycle park-and-ride (P&R) spaces, and transfer dummy variable. Results from multiplicative model indicate that factors influencing Metro station ridership may also influence Metro station-to-station ridership, varied by both trip ends (origin/destination) and time of day. In comparison with previous case studies, CBD dummy variable and bicycle P&R are statistically significant to explain Metro ridership in Nanjing. In addition, Metro travel impedance variables have significant influence on station-to-station ridership, representing the basic time-decay relationship in travel distribution. Potential implications of the model results include estimating Metro ridership at station level and station-to-station level by considering the significant variables, recognizing the necessity to establish a cooperative multi-modal transit system, and identifying opportunities for transit-oriented development

    Overexpression of EFEMP1 correlates with tumor progression and poor prognosis in human ovarian carcinoma.

    Get PDF
    OBJECTIVE:This study was to explore the role of EFEMP1 in ovarian tumor progression and its relationship with prognosis of ovarian carcinoma. METHODS:EFEMP1 mRNA and protein expressions in normal ovarian tissue, ovarian tumor, high invasive subclones and low invasive subclones were evaluated by immunohistochemistry and real time RT-PCR. Serum EFEMP1 levels in patients with ovarian tumor were measured by ELISA assay. To assess the angiogenic properties of EFEMP1, VEGF and tumor microvessel density were analyzed in ovarian carcinoma by immunohistochemistry. RESULTS:EFEMP1 expression was up-regulated in ovarian carcinoma, positively correlated with MVD and VEGF, and its overexpression and high serum levels were significantly associated with high stage, low differentiation, lymph node metastasis and poor prognosis of ovarian cancer. EFEMP1 expression was also found to be over-expressed in the highly invasive subclones compared with the low invasive subclones. CONCLUSION:EFEMP1 is a newly identified gene over-expressed in ovarian cancer, associated with poor clinicopathologic features and promotes angiogenesis. This study shows that EFEMP1 may serve as a new prognostic factor and a therapeutic target for patients with ovarian cancer in the future

    Regulation Mechanism of Plant Pigments Biosynthesis: Anthocyanins, Carotenoids, and Betalains

    No full text
    Anthocyanins, carotenoids, and betalains are known as the three major pigments in the plant kingdom. Anthocyanins are flavonoids derived from the phenylpropanoid pathway. They undergo acylation and glycosylation in the cytoplasm to produce anthocyanin derivatives and deposits in the cytoplasm. Anthocyanin biosynthesis is regulated by the MBW (comprised by R2R3-MYB, basic helix-loop-helix (bHLH) and WD40) complex. Carotenoids are fat-soluble terpenoids whose synthetic genes also are regulated by the MBW complex. As precursors for the synthesis of hormones and nutrients, carotenoids are not only synthesized in plants, but also synthesized in some fungi and bacteria, and play an important role in photosynthesis. Betalains are special water-soluble pigments that exist only in Caryophyllaceae plants. Compared to anthocyanins and carotenoids, the synthesis and regulation mechanism of betalains is simpler, starting from tyrosine, and is only regulated by MYB (myeloblastosis). Recently, a considerable amount of novel information has been gathered on the regulation of plant pigment biosynthesis, specifically with respect to aspects. In this review, we summarize the knowledge and current gaps in our understanding with a view of highlighting opportunities for the development of pigment-rich plants

    Insights into Synergy of Copper and Acid Sites for Selective Catalytic Reduction of NO with Ammonia over Zeolite Catalysts

    No full text
    Herein, we report the function of copper sites in Cu-SSZ-13, Cu-ZSM-5 and Cu-Beta catalysts with the same Si/Al ratio (14) and Cu/Al ratio (0.4) on selective catalytic reduction of NO with NH3 (NH3-SCR) and reveal the relationship between active sites (Cu sites, acid sites) and catalytic activity. The results show that the amount of isolated Cu2+ ions in the catalysts directly determines the formation of strong Lewis acid sites and reaction intermediate NO3&minus; ions, thus affecting the low-temperature SCR performance, while the amount of highly stable Cu+ ions and Br&oslash;nsted acid sites is related to the high-temperature SCR performance of the catalysts. Consequently, it contains enough isolated Cu2+ ions, highly stable Cu+ ions and Br&oslash;nsted acid sites, which endows Cu-SSZ-13 with excellent NH3-SCR activity

    Insights into Synergy of Copper and Acid Sites for Selective Catalytic Reduction of NO with Ammonia over Zeolite Catalysts

    No full text
    Herein, we report the function of copper sites in Cu-SSZ-13, Cu-ZSM-5 and Cu-Beta catalysts with the same Si/Al ratio (14) and Cu/Al ratio (0.4) on selective catalytic reduction of NO with NH3 (NH3-SCR) and reveal the relationship between active sites (Cu sites, acid sites) and catalytic activity. The results show that the amount of isolated Cu2+ ions in the catalysts directly determines the formation of strong Lewis acid sites and reaction intermediate NO3− ions, thus affecting the low-temperature SCR performance, while the amount of highly stable Cu+ ions and Brønsted acid sites is related to the high-temperature SCR performance of the catalysts. Consequently, it contains enough isolated Cu2+ ions, highly stable Cu+ ions and Brønsted acid sites, which endows Cu-SSZ-13 with excellent NH3-SCR activity

    Candida albicans-induced activation of the TGF-β/Smad pathway and upregulation of IL-6 may contribute to intrauterine adhesion

    No full text
    Abstract Iatrogenic injury to endometrial tissue is the main cause of intrauterine adhesions (IUA) and infection can also damage the endometrium. The microbiota plays an important role in the health of the female reproductive tract. However, the mechanism is still unclear. In total, 908 patients with IUA and 11,389 healthy individuals were retrospectively selected for this clinical study. Participant information including vaginal microecological results and human papillomavirus (HPV) status were collected. Univariate and multivariate logistic regression analyses were used to identify the factors related to IUA. Next, animal experiments were performed in a curettage-induced IUA rat model. After the procedure, rats in the experimental group received a vaginal infusion of a Candida albicans (C. albicans) fungal solution. On days 3, 7, and 14 after curettage and infusion, the expression levels of IL-6, fibrotic pathway-related factors (TGF-β1, Smad 2, and COL1), and estrogen receptor (ER) and progesterone receptor (PR) in rat endometrial tissues were assessed. Fungal infection of the reproductive tract was found to be an independent risk factor for IUA (P < 0.05). The inflammatory response and degree of fibrosis were greater in rats infected with C. albicans than in the controls. The levels of IL-6, TGF-β1, Smad 2, and COL1 expression in endometrial tissues were significantly higher in the experimental group than in the control group (P < 0.05). However, the ER and PR levels were lower in the IUA group than in the non-IUA group (P < 0.05). C. albicans infection may be related to IUA. C. albicans elicits a strong inflammatory response that can lead to more severe endometrial fibrosis
    • …
    corecore