30 research outputs found

    Surgical Resection for Small Cell Lung Cancer: Pneumonectomy versus Lobectomy

    Get PDF
    Background. There are some patients with SCLC that are diagnosed in the operating room by cryosection and surgeons had to perform surgical resection for these patients. The aim of this study is to compare the effective of pneumonectomy with lobectomy for SCLC. Methods. A retrospective study was undertaken in 75 patients with SCLC that were diagnosed by cryosection during surgery. 31 of them underwent pneumonectomy, 44 underwent lobectomy. Local recurrence rate and survival rate according to surgical procedures and cancer stages were analyzed. Results. There was significant difference in the overall survival rate between lobectomy and pneumonectomy groups (P = 0.044). For patients with stage II SCLC, the overall survival rate after pneumonectomy was significantly better than after lobectomy (P = 0.028). No significant difference in overall survival rate was found between the two surgical groups in patients with stage III SCLC (P = 0.933). The local recurrence rate in lobectomy group was significant higher that in pneumonectomy group (P = 0.0017). Conclusions. SCLC was responsive to surgical therapy. When surgeons have to select an appropriate method of operation for patients with SCLC during surgery, pneumonectomy may be the right choice for these patients. Pneumonectomy can result in significantly better local control and higher survival rate compare with lobectomy

    Inside-out Ca2+ signalling prompted by STIM1 conformational switch

    Get PDF
    Store-operated Ca(2+) entry mediated by STIM1 and ORAI1 constitutes one of the major Ca(2+) entry routes in mammalian cells. The molecular choreography of STIM1–ORAI1 coupling is initiated by endoplasmic reticulum (ER) Ca(2+) store depletion with subsequent oligomerization of the STIM1 ER-luminal domain, followed by its redistribution towards the plasma membrane to gate ORAI1 channels. The mechanistic underpinnings of this inside-out Ca(2+) signalling were largely undefined. By taking advantage of a unique gain-of-function mutation within the STIM1 transmembrane domain (STIM1-TM), here we show that local rearrangement, rather than alteration in the oligomeric state of STIM1-TM, prompts conformational changes in the cytosolic juxtamembrane coiled-coil region. Importantly, we further identify critical residues within the cytoplasmic domain of STIM1 (STIM1-CT) that entail autoinhibition. On the basis of these findings, we propose a model in which STIM1-TM reorganization switches STIM1-CT into an extended conformation, thereby projecting the ORAI-activating domain to gate ORAI1 channels

    Study on Siphon Drainage Capacity of Slopes with Long-Horizontal Pipe Sections

    No full text
    Siphon drainage, which is applicable in engineering as one of the effective methods to maintain slope stability, has many advantages, including no additional power requirements, simple construction, and low construction cost. However, due to topographic constraints and high farmland occupation costs, most projects inevitably use pipes with a total length of more than 100 m and horizontal sections of more than 50 m for drainage. The increase in pipe length has serious adverse effects on the siphon drainage process, limiting its drainage capacity and long-term applicability. Therefore, in slope siphon drainage, drainage efficiency and long-term effectiveness are critical factors in determining whether a particular pipe size can be used effectively for slope drainage management. This paper investigates the performance of different pipe diameters in drainage capacity, flow regime, and restarting ability under different head and pipe length combinations through theoretical analysis and extensive foot-scale model tests. It was found that a 5 mm pipe diameter, as a transitional pipe diameter between capillary and typical pipe diameter, has both capillary and gravity-dominated characteristics under different capillary and Reynolds number conditions, which can form a stable segmental plug flow while maintaining the presence of liquid film and preventing increased frictional losses along the course

    Improved Calculation Method for Siphon Drainage with Extended Horizontal Sections

    No full text
    Slope siphon drainage is a convenient and efficient above-ground drainage method that is free of manual power and can effectively maintain the stability of potential landslides and prevent the loss of life and property. The complex engineering topography inevitably requires the use of siphon drains with a total length of more than 150 m and a horizontal section length of more than 80 m, which significantly increases the difficulty of calculating the drainage capacity and thus affects the actual utilization of the project. The traditional siphon flow rate equation does not apply to long-pipe siphon conditions, especially when the lift is close to the limit, and there are significant errors in the calculation results, for which we propose a new calculation method. The proposed method considers both air release and flow-pattern classification. Thirty-six sets of experiments were conducted to validate our proposed calculation method. The results showed that our method not only calculated the siphon flow velocity well but also predicted the main flow pattern in the siphon in the experiment well. Furthermore, the equation for calculating the siphon flow velocity was extended to the siphon operation mode with long horizontal sections

    Improved Calculation Method for Siphon Drainage with Extended Horizontal Sections

    No full text
    Slope siphon drainage is a convenient and efficient above-ground drainage method that is free of manual power and can effectively maintain the stability of potential landslides and prevent the loss of life and property. The complex engineering topography inevitably requires the use of siphon drains with a total length of more than 150 m and a horizontal section length of more than 80 m, which significantly increases the difficulty of calculating the drainage capacity and thus affects the actual utilization of the project. The traditional siphon flow rate equation does not apply to long-pipe siphon conditions, especially when the lift is close to the limit, and there are significant errors in the calculation results, for which we propose a new calculation method. The proposed method considers both air release and flow-pattern classification. Thirty-six sets of experiments were conducted to validate our proposed calculation method. The results showed that our method not only calculated the siphon flow velocity well but also predicted the main flow pattern in the siphon in the experiment well. Furthermore, the equation for calculating the siphon flow velocity was extended to the siphon operation mode with long horizontal sections

    Study on Siphon Drainage Capacity of Slopes with Long-Horizontal Pipe Sections

    No full text
    Siphon drainage, which is applicable in engineering as one of the effective methods to maintain slope stability, has many advantages, including no additional power requirements, simple construction, and low construction cost. However, due to topographic constraints and high farmland occupation costs, most projects inevitably use pipes with a total length of more than 100 m and horizontal sections of more than 50 m for drainage. The increase in pipe length has serious adverse effects on the siphon drainage process, limiting its drainage capacity and long-term applicability. Therefore, in slope siphon drainage, drainage efficiency and long-term effectiveness are critical factors in determining whether a particular pipe size can be used effectively for slope drainage management. This paper investigates the performance of different pipe diameters in drainage capacity, flow regime, and restarting ability under different head and pipe length combinations through theoretical analysis and extensive foot-scale model tests. It was found that a 5 mm pipe diameter, as a transitional pipe diameter between capillary and typical pipe diameter, has both capillary and gravity-dominated characteristics under different capillary and Reynolds number conditions, which can form a stable segmental plug flow while maintaining the presence of liquid film and preventing increased frictional losses along the course

    A novel technique for lymphadenectomy along the left recurrent laryngeal nerve during minimally invasive esophagectomy: a retrospective cohort study

    No full text
    Abstract Background In the context of esophageal cancers, lymph nodes located along the left recurrent laryngeal nerve (RLN) exhibit significant involvement, posing significant challenges for lymphadenectomy. The objective of this study is to assess the safety and efficacy of a novel technique for lymphadenectomy called "elastic suspension of left RLN" method, comparing it with the conventional approach. Methods Between January 2016 and June 2020, a total of 393 patients who underwent minimally invasive esophagectomy with gastroplasty and cervical esophagogastric anastomosis were enrolled in the study. Among them, 291 patients underwent the "elastic suspension of left RLN" method, while 102 patients underwent the conventional method. We compared the number of harvested lymph nodes along the left RLN and assessed postoperative complications between these two groups. Additionally, the overall survival (OS) rate was calculated and analyzed for the entire cohort. Results In comparison to the conventional group, the elastic suspension group exhibited a higher yield of harvested lymph nodes along the left RLN (5.36 vs 3.07, P < 0.001). Moreover, the incidence of postoperative hoarseness was lower in the elastic suspension group (10.65% vs 18.63%, P = 0.038). The average duration of lymphadenectomy along the left RLN was 11.85 min in the elastic suspension group and 11.51 min in the conventional group, although this difference was not statistically significant (P = 0.091). Notably, the overall 5-year OS was markedly higher in the elastic suspension group compared to the conventional group (64.1% vs. 50.1%, P = 0.020). Conclusions The findings suggest that the novel "elastic suspension of left RLN" method for lymphadenectomy along the left RLN in minimally invasive esophagectomy is both safe and effective. This technique holds promise for widespread adoption in esophagectomy procedures

    Blocking Adenosine/A2AR Pathway for Cancer Therapy

    No full text
    Adenosine is a metabolite produced abundantly in the tumor microenvironment, dampening immune response in inflamed tissues via adenosine A2A receptor (A2AR) which is widely expressed on immune cells, inhibiting anti-tumor immune response accordingly. Therefore, blocking adenosine signaling pathway is of potential to promote anti-tumor immunity. This review briefly introduces adenosine signaling pathway, describes its role in regulating tumor immunity and highlights A2AR blockade in cancer therapy. Prospective anti-tumor activity of adenosine/A2AR inhibition has been revealed by preclinical data, and a number of clinical trials of A2AR antagonists are under way. Primary results from clinical trials suggest that A2AR antagonists are well tolerated in cancer patients and are effective both as monotherapy and in combination with other therapies. In the future, finding predictive biomarkers are critical to identify patients most likely to benefit from adenosine pathway blockade, and further researches are needed to rationally combine A2AR antagonists with other anti-tumor therapies

    Molecularly self‐fueled nano-penetrator for nonpharmaceutical treatment of thrombosis and ischemic stroke

    No full text
    Thrombotic cerebro-cardiovascular diseases are the leading causes of disability and death worldwide but current drug therapeutics show important limitations. Here, the authors exploit a selfpropelling nano-penetrator with high fuel loading and controllable motion which is molecularly co-assembled using a photothermal photosensitizer and a photothermal-activable NO donor
    corecore