237 research outputs found

    Asymmetric electron energy sharing in strong-field double ionization of helium

    Full text link
    With the classical three-dimensional ensemble model, we have investigated the microscopic recollision dynamics in nonsequential double ionization of helium by 800 nm laser pulses at 2.0 PW/cm^2. We demonstrate that the asymmetric energy sharing between the two electrons at recollision plays a decisive role in forming the experimentally observed V-shaped structure in the correlated longitudinal electron momentum spectrum at the high laser intensity [Phys. Rev. Lett. 99, 263003 (2007)]. This asymmetric energy sharing recollision leaves footprints on the transverse electron momentum spectra, which provide a new insight into the attosecond three-body interactions

    Multiphoton Rabi Oscillations of Correlated Electrons in Strong Field Nonsequential Double Ionization

    Full text link
    With quantum calculations, we have investigated the multiphoton nonsequential double ionization of helium atoms in intense laser fields at ultraviolet wavelengths. Very surprisingly, we find a so-far unobserved double-circle structure in the correlated electron momentum spectra. The double-circle structure essentially reveals multiphoton Rabi oscillations of two electrons, which are strongly supported by the oscillating population of a certain doubly excited state and by the oscillating double ionization signals. This two-electron multiphoton Rabi effect provides profound understandings of electronic correlations and complicated multiphoton phenomena and is expected to be a new tool for broad applications, such as quantum coherent control.Comment: 5 pages, 5 figure

    BER Analysis of Decision-Feedback Multiple Symbol Detection in Noncoherent MIMO Ultra-Wideband Systems

    Full text link
    In this paper, we investigate noncoherent multiple-input multiple-output (MIMO) ultra-wideband (UWB) systems where the signal is encoded by differential space-time block code (DSTBC). DSTBC enables noncoherent MIMO UWB systems to achieve diversity gain. However, the traditional noncoherent symbol-by-symbol differential detection (DD) for DSTBC-UWB suffers from performance degradation compared with the coherent detection. We introduce a noncoherent multiple symbol detection (MSD) scheme to enhance the performance of DSTBC-UWB system. Although the MSD scheme can boost the performance more as the observation window size gets to larger, the complexity of the exhaustive search for MSD also exponentially increases in terms of the window size. To decrease the computational complexity, the concept of decision-feedback (DF) is introduced to MSD for DSTBC-UWB in this paper. The resultant DF-MSD yields reasonable complexity and also solid performance improvement. We provide the bit error rate (BER) analysis for the proposed DF-MSD. Both theoretical analysis and simulation results validate the proposed scheme.Comment: 6 pages, 3 figures, accepted by IEEE TV

    Revisiting the tunnelling site of electrons in strong field enhanced ionization of molecules

    Full text link
    We investigated electron emissions in strong field enhanced ionization of asymmetric diatomic molecules by quantum calculations. It is demonstrated that the widely-used intuitive physical pic- ture, i.e., electron wave packet direct ionization from the up-field site (DIU), is incomplete. Besides DIU, we find another two new ionization channels, the field-induced excitation with subsequent ionization from the down-field site (ESID), and the up-field site (ESIU). The contributions from these channels depend on the molecular asymmetry and internuclear distance. Our work provides a more comprehensive physical picture for the long-standing issue about enhanced ionization of diatomic molecules

    Blind Channel Separation in Massive MIMO System under Pilot Spoofing and Jamming Attack

    Full text link
    We consider a channel separation approach to counter the pilot attack in a massive MIMO system, where malicious users (MUs) perform pilot spoofing and jamming attack (PSJA) in uplink by sending symbols to the basestation (BS) during the channel estimation (CE) phase of the legitimate users (LUs). More specifically, the PSJA strategies employed by the MUs may include (i) sending the random symbols according to arbitrary stationary or non-stationary distributions that are unknown to the BS; (ii) sending the jamming symbols that are correlative to those of the LUs. We analyze the empirical distribution of the received pilot signals (ED-RPS) at the BS, and prove that its characteristic function (CF) asymptotically approaches to the product of the CFs of the desired signal (DS) and the noise, where the DS is the product of the channel matrix and the signal sequences sent by the LUs/MUs. These observations motivate a novel two-step blind channel separation method, wherein we first estimate the CF of DS from the ED-RPS and then extract the alphabet of the DS to separate the channels. Both analysis and simulation results show that the proposed method achieves good channel separation performance in massive MIMO systems

    Quenching effect in below-threshold high harmonic generation

    Full text link
    We theoretically demonstrate the quenching effect in below-threshold high harmonic generation (HHG) by using the time-dependent density-functional theory (TDDFT) and solving the time-dependent Schr\"{o}dinger equation (TDSE). It is shown that the HHG is substantially suppressed in particular harmonic orders in the below-threshold region when multi-electron interaction comes into play. The position of the suppression is determined by the energy gap between the highest occupied orbital and the higher-lying orbital of the target. We show that the quenching effect is due to a new class of multi-electron dynamics involving electron-electron energy transfer, which is analog to the fluorescence quenching owing to the energy transfer between molecules in fluorescent material. This work reveals the important role of the multi-electron interaction on HHG especially in the below-threshold region.Comment: 5 figure

    Exit momentum and instantaneous ionization rate of nonadiabatic tunneling ionization in elliptically polarized laser fields

    Full text link
    Based on the strong-field approximation, we obtain analytical expressions for the initial momentum at the tunnel exit and instantaneous ionization rate of tunneling ionization in elliptically polarized laser fields with arbitrary ellipticity. The tunneling electron reveals a nonzero offset of the initial momentum at the tunnel exit in the elliptically polarized laser field. We find that the transverse and longitudinal components of this momentum offset with respect to the instantaneous field direction are directly related to the time derivatives of the instantaneous laser electric field along the angular and radial directions, respectively. We further show that the nonzero initial momentum at the tunnel exit has a significant influence on the laser phase dependence of the instantaneous ionization rate in the nonadiabatic tunneling regime.Comment: 7 page, 4 figures, accepted by Phys. Rev.

    Classical simulations including electron correlations for sequential double ionization

    Full text link
    With a classical ensemble model that including electron correlations during the whole ionization process, we investigated strong-field sequential double ionization of Ar by elliptically polarized pulses at the quantitative level. The experimentally observed intensity-dependent three-band or four-band structures in the ion momentum distributions are well reproduced with this classical model. More importantly, the experimentally measured ionization time of the second electrons [A. N. Pfeiffer et al., Nature Phys. 7, 428 (2011)], which can not be predicted by the standard independent-electron model, is quantitatively reproduced by this fully classical correlated model. The success of our work encourages classical description and interpretation of the complex multi-electron effects in strong field ionization where nonperturbative quantum approaches are currently not feasible

    An Improved Diversity Combining Receiver for Layered ACO-FOFDM in IM/DD Systems

    Full text link
    In this paper, an improved receiver based on diversity combining is proposed to improve the bit error rate (BER) performance of layered asymmetrically clipped optical fast orthogonal frequency division multiplexing (ACO-FOFDM) for intensity-modulated and direct-detected (IM/DD) optical transmission systems. Layered ACO-FOFDM can compensate the weakness of traditional ACO-FOFDM in low spectral efficiency, the utilization of discrete cosine transform in FOFDM system instead of fast Fourier transform in OFDM system can reduce the computational complexity without any influence on BER performance. The BER performances of layered ACO-FOFDM system with improved receiver based on diversity combining and DC-offset FOFDM (DCO-FOFDM) system with optimal DC-bias are compared at the same spectral efficiency. Simulation results show that under different optical bit energy to noise power ratios, layered ACO-FOFDM system with improved receiver has 2.86dB, 5.26dB and 5.72dB BER performance advantages at forward error correction limit over DCO-FOFDM system when the spectral efficiencies are 1 bit/s/Hz, 2 bits/s/Hz and 3 bits/s/Hz, respectively. Layered ACO-FOFDM system with improved receiver based on diversity combining is suitable for application in the adaptive IM/DD systems with zero DC-bias.Comment: This manuscript has been published in Photonic Network Communications, we replace the previous version submitted on March 12th due to the modification of manuscript titl

    Faster-than-Nyquist Non-Orthogonal Frequency-Division Multiplexing for Visible Light Communications

    Full text link
    In this paper, we propose a faster-than-Nyquist (FTN) non-orthogonal frequency-division multiplexing (NOFDM) scheme for visible light communications (VLC) where the multiplexing/demultiplexing employs the inverse fractional cosine transform (IFrCT)/FrCT. Different to the common fractional Fourier transform-based NOFDM (FrFT-NOFDM) signal, FrCT-based NOFDM (FrCT-NOFDM) signal is real-valued which can be directly applied to the VLC systems without the expensive upconversion. Thus, FrCT-NOFDM is more suitable for the cost-sensitive VLC systems. Meanwhile, under the same transmission rate, FrCT-NOFDM signal occupies smaller bandwidth compared to OFDM signal. When the bandwidth compression factor α\alpha is set to 0.80.8, 20%20\% bandwidth saving can be obtained. Therefore, FrCT-NOFDM has higher spectral efficiency and suffers less high-frequency distortion compared to OFDM, which benefits the bandwidth-limited VLC systems. As the simulation results show, bit error rate (BER) performance of FrCT-NOFDM with α\alpha of 0.90.9 or 0.80.8 is better than that of OFDM. Moreover, FrCT-NOFDM has a superior security performance. In conclusion, FrCT-NOFDM shows great potential for application in the future VLC systems.Comment: Under review of Journal of Lightwave Technolog
    corecore