28 research outputs found

    Molecular Characterization and SNP-Based Molecular Marker Development of Two Novel High Molecular Weight Glutenin Genes from <i>Triticum spelta</i> L.

    No full text
    Spelt wheat (Triticum spelta L., 2n=6x=42, AABBDD) is a valuable source of new gene resources for wheat genetic improvement. In the present study, two novel high molecular weight glutenin subunits (HMW-GS) 1Ax2.1* at Glu-A1 and 1By19* at Glu-B1 from German spelt wheat were identified. The encoding genes of both subunits were amplified and cloned by allele-specific PCR (AS-PCR), and the complete sequences of open reading frames (ORF) were obtained. 1Ax2.1* with 2478 bp and 1By19* with 2163 bp encoded 824 and 720 amino acid residues, respectively. Molecular characterization showed that both subunits had a longer repetitive region, and high percentage of α-helices at the N- and C-termini, which are beneficial for forming superior gluten macropolymers. Protein modelling by AlphaFold2 revealed similar three-diamensional (3D) structure features of 1Ax2.1* with two x-type superior quality subunits (1Ax1 and 1Ax2*) and 1By19* with four y-type superior quality subunits (1By16, 1By9, 1By8 and 1By18). Four cysteine residues in the three x-type subunits (1Ax2.1*, 1Ax1 and 1Ax2*) and the cysteine in intermediate repeat region of y-type subunits were not expected to participate in intramolecular disulfide bond formation, but these cysteines might form intermolecular disulfide bonds with other glutenins and gliadins to enhance gluten macropolymer formation. The SNP-based molecular markers for 1Ax2.1* and 1By19* genes were developed, which were verified in different F2 populations and recombination inbred lines (RILs) derived from crossing between spelt wheat and bread wheat cultivars. This study provides data on new glutenin genes and molecular markers for wheat quality improvement

    The Texture Change of Chinese Traditional Pig Trotter with Soy Sauce during Stewing Processing: Based on a Thermal Degradation Model of Collagen Fibers

    No full text
    In order to clarify the influence of the thermal degradation of collagen fibers on the texture profile analysis (TPA) parameters of pig trotter stewed with soy sauce (PTSWSS), TPA (springiness, chewiness, hardness, and gumminess), the secondary structures, the cross-linkage, decorin (DCN) and glycosaminoglycan (GAG) levels, and the histochemical morphology of collagen fibers during the stewing process (0, 30, 60, 120 min) were assessed. The springiness and hardness increased after 30 min of stewing, along with the denaturation of collagen proteins. TPA parameters improved with the prolonged stewing times of 60 and 120 min, along with the ultra-structural dissolution of collagen fibers, and a substantial reduction in cross-linkage, DCN, and GAG levels, and the unfolded triple-helix structure. This study concluded that the TPA parameters of PTSWSS were dependent on the stewing time, and that the improvement in TPA parameters with longer stewing time could primarily be attributed to the thermal degradation of collagen fibers

    Increased secondary aerosol contribution and possible processing on polluted winter days in China

    No full text
    China experiences severe particulate pollution, especially in winter, and determining the characteristics of particulate matter (PM) during pollution events is imperative for understanding the sources and causes of the pollution. However, inconsistencies have been found in the aerosol composition, sources and secondary processing among reported studies. Modern meta-analysis was used to probe the PM chemical characteristics and processing in winter at four representative regions of China, and the first finding was that secondary aerosol formation was the major effect factor for PM pollution. The secondary inorganic species behaved differently in the four regions: sulfate, nitrate, and ammonium increased in the Beijing-Tianjin-Hebei (BTH) and Guanzhong (GZ) areas, but only nitrate increased in the Pearl River Delta (PRD) and Yangtze River Delta (YRD) regions. The increased production of secondary organic aerosol (SOA) was probably caused by aqueous-phase processing in the GZ and BTH regions and by photochemical reactions in the PRD. Finally, we suggest future AMS/ACSM observations should focus on the aerosol characteristics in rural areas in winter in China.</p

    Day-night differences and seasonal variations of chemical species in PM10 over Xi'an, northwest China

    No full text
    To investigate day-night differences and seasonal variations of PM10 and its chemical composition in an urban environment in Xi&#39;an, northwest China, day- and nighttime PM10 mass and its chemical components including water-soluble ions (Na+, NH4 (+), K+, Mg2+, Ca2+, F-, Cl-, NO3 (-), and SO4 (2-)), organic carbon (OC), elemental carbon, and water-soluble organic carbon (WSOC) were measured on selected representative days from 20 December 2006 to 12 November 2007. Annual mean PM10 concentration in this city was five times of the China Ambient Air Quality Standard for annual average (70 mu g m(-3)). Carbonaceous fractions and water-soluble ions accounted for nearly one third and 12.4 %, respectively, of the annual mean PM10 mass. No dramatic day-night differences were found in the loadings of PM10 or its chemical components. Spring samples were highlighted by abundance of Ca2+, while the secondary aerosol species (SO4 (2-), NO3 (-), and NH4 (+)) and OC dominated in summer, autumn, and winter samples. Relatively low NO3 (-)/SO4 (2-) ratio suggested that stationary source emissions were more important than vehicle emissions in the source areas in this city. Strong relationships between WSOC and biomass markers (water-soluble K+, OC1, and OP) were observed in winter and autumn, indicating that WSOC was derived mainly from biomass burning in these seasons. This was also supported by analysis results on the biomass burning events. In contrast, poor correlations between WSOC and biomass markers were demonstrated in summer and spring, implying that WSOC was mainly formed as secondary organic carbon through photochemical activities.</p
    corecore