17 research outputs found

    Metabolic Profiling Analysis of the Alleviation Effect of the Fractions of Niuhuang Jiedu Tablet on Realgar

    Get PDF
    Niuhuang Jiedu Tablet (NJT) is a classical formula in treating acute tonsillitis, pharyngitis, and so on. In the formula, significant level of Realgar as a potentially toxic element is contained. Our previous experiments revealed that it was less toxic for combined Realgar in NJT. However, the active fraction of this prescription with toxicity alleviation effect on Realgar was still obscure. NJT was divided into five different polar fractions (NJT-PET, NJT-25, NJT-50, NJT-75, and NJT-95), and we explored the toxicity alleviation effect on Realgar. Based on 1H NMR spectra of urine and serum from rats, PCA and PLS-DA were performed to identify different metabolic profiles. Liver and kidney histopathology examinations and serum clinical chemistry analysis were also performed. With pattern recognition analysis of metabolites in urine and serum, Realgar group showed a clear separation from control group, while the metabolic profiles of NJT-PET, NJT-25, NJT-50, and NJT-95 groups were similar to Realgar group, and the metabolic profiles of NJT and NJT-75 groups were very close to control group. Statistics results were confirmed by the histopathological examination and biochemical assay. The present work indicated that 75% EtOH fraction of NJT was the most valid fraction with the toxicity alleviation effect on Realgar

    1H-NMR-Based Metabonomics of the Protective Effect of Coptis chinensis and Berberine on Cinnabar-Induced Hepatotoxicity and Nephrotoxicity in Rats

    No full text
    Coptis chinensis Franch has been used in Traditional Chinese Medicine (TCM) for treating infectious and inflammatory diseases for over two thousand years. Berberine (BN), an isoquinoline alkaloid, is the main component of Coptis chinensis. The pharmacological basis for its therapeutic effects, which include hepatoprotective effects on liver injuries, has been studied intensively, yet the therapy of liver injuries and underlying mechanism remain unclear. We investigated the detoxification mechanism of Coptis chinensis and berberine using metabolomics of urine and serum in the present study. After the treatment with Coptis chinensis and berberine, compared with the cinnabar group, Coptis chinensis and berberine can regulate the concentration of the endogenous metabolites. PLS-DA score plots demonstrated that the urine and serum metabolic profiles in rats of the Coptis chinensis and berberine groups were similar those of the control group, yet remarkably apart from the cinnabar group. The mechanism may be related to the endogenous metabolites including energy metabolism, amino acid metabolism and metabolism of intestinal flora in rats. Meanwhile, liver and kidney histopathology examinations and serum clinical chemistry analysis verified the experimental results of metabonomics

    3″-Hydroxymethyl-butyrolactone II from Aspergillus

    No full text

    Jaspolides A—F, Six New Isomalabricane-Type Terpenoids from the Sponge Jaspis sp.

    No full text
    A chemical investigation of Jaspis sp., the marine sponge collected from the South China Sea led to the isolation of six new isomalabaricane-type compounds, jaspolides A-F (1-6). The structures of those compounds were elucidated by extensive spectroscopic methods. The structure-types of 1 to 6 could be classified into triter-penes (1, 2), sesterterpene (6), diterpenes (3, 4), and nortriterpene (5). The biogenetic transformation of the isolated compounds was also speculated.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000234790900002&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701Chemistry, MedicinalChemistry, MultidisciplinaryPharmacology & PharmacySCI(E)PubMed20ARTICLE14-85

    Recent Development of Neural Microelectrodes with Dual-Mode Detection

    No full text
    Neurons communicate through complex chemical and electrophysiological signal patterns to develop a tight information network. A physiological or pathological event cannot be explained by signal communication mode. Therefore, dual-mode electrodes can simultaneously monitor the chemical and electrophysiological signals in the brain. They have been invented as an essential tool for brain science research and brain-computer interface (BCI) to obtain more important information and capture the characteristics of the neural network. Electrochemical sensors are the most popular methods for monitoring neurochemical levels in vivo. They are combined with neural microelectrodes to record neural electrical activity. They simultaneously detect the neurochemical and electrical activity of neurons in vivo using high spatial and temporal resolutions. This paper systematically reviews the latest development of neural microelectrodes depending on electrode materials for simultaneous in vivo electrochemical sensing and electrophysiological signal recording. This includes carbon-based microelectrodes, silicon-based microelectrode arrays (MEAs), and ceramic-based MEAs, focusing on the latest progress since 2018. In addition, the structure and interface design of various types of neural microelectrodes have been comprehensively described and compared. This could be the key to simultaneously detecting electrochemical and electrophysiological signals

    Three New Butenolides from the Fungus Aspergillus sp. CBS-P-2

    No full text
    Three new butenolides aspernolides H–J (1–3) together with seven known ones (4–10) were isolated from the fungus Aspergillus sp. CBS-P-2. Their chemical structures were established on the basis of 1D- and 2D-NMR spectroscopic data, HR-ESI-MS analysis, and their absolute configuration were determined by circular dichroism (CD) analysis. All the compounds were evaluated for the antioxidant effects by DPPH and ABTS methods, the antitumor activities against four human tumor cell lines (HL-60, ASPC1, HCT-116 and PC-3) and antimicrobial activities. Compounds 4–10 showed significant activity against DPPH (IC50 = 15.9–34.3 μM) and compounds 1–10 exhibited significant ABTS free radical scavenging activity (IC50 = 2.8–33.1 μM). Compounds 2, 5 and 11 showed potent cytotoxic activities against HL-60 cell lines with IC50 values of 39.4, 13.2 and 16.3 μM, respectively. Compound 10 showed good antimicrobial activity against Staphylococcus aureus with minimum inhibitory concentration (MIC) of 21.3 μM

    Cyclodextrin-Based Host–Guest Supramolecular Nanofibrous Composite for Biomedical Applications

    No full text
    Cyclodextrins (CDs) are macrocyclic oligosaccharides, containing between six and eight alpha(1 → 4)-linked glucopyranoses. CDs have a hydrophobic cone-shaped internal cavity and a hydrophilic exterior surface. They form non-covalent inclusion complexes (ICs) with various drugs by trapping the full or partial inclusions in their cavity. Supramolecular ICs have gained attention in engineering entrapped drug performance field due to their potential to protect and modify the physicochemical properties of entrapped lipophilic and volatile drugs. However, the poor structural and mechanical properties of pure CD-ICs could restrict their application and the need for a suitable carrier system. Electrospun nanofibers have been the center of attention for biomedical applications due to their tunable physicochemical properties. Recent studies have highlighted that the entrapment of drug/CD-based ICs into nanofibers is an active research area since it facilitates high encapsulation, it modulates the release profile of the guest, integrates multi-type drugs, and leads to a synergistic effect. This mini-review first summarizes the potential benefits and shortcomings of drug/CD-ICs and nanofibers, and then, we discuss the advancements in the fabrication and characteristics of CD-ICs embedded nanofibers, along with some practical suggestions for potential biomedical applications
    corecore