4 research outputs found

    Carbogen gas-challenge BOLD fMRI in assessment of liver hypoxia after portal microcapsules implantation.

    No full text
    BACKGROUND:Hypoxia is one of the key factors affecting the survival of islet cells transplanted via the portal vein. Blood oxygen level dependent functional magnetic resonance imaging (BOLD-fMRI) is the only imaging technique that can detect the level of blood oxygen level in vivo. However, so far no study has indicated that BOLD-fMRI can be applied to monitor the liver oxygen level after islet transplantation. OBJECTIVE:To evaluate the value of Carbogen-challenge BOLD MRI in assessing the level of hypoxia in liver tissue after portal microcapsules implanted. METHODS:Fifty-one New Zealand rabbits were randomly divided into three experimental groups (15 in each group) were transplanted microencapsulated 1000 microbeads/kg (PV1 group), 3000 microbeads/kg (PV2 group), 5000 microbeads/kg (PV3 group), and 6 rabbits were injected with the same amount of saline as the control group, BOLD-fMRI was performed following carbogen breathing in each group after transplantation on 1d, 2d, 3d and 7d, T2* weighted image, R2* value and ΔR2* value parameters for the liver tissue. Pathological examinations including liver gross pathology, H&E staining and pimonidazole immunohistochemistry were performed after BOLD-fMRI. The differences of pathological results among each group were compared. The ΔR2* values and transplanted doses were analyzed. RESULTS AND CONCLUSIONS:ΔR2* values at the 1-3d and 7d after transplantation were significantly different in each groups (P<0.05). ΔR2* values decreased gradually with the increase of transplanted dose, and was negatively correlated with transplant dose at 3d after transplantation (r = -0.929, P <0.001). Liver histopathological examination showed that the degree of hypoxia of liver tissue increased with the increase of transplanted doses, Carbogen-challenge BOLD-fMRI can assess the degree of liver hypoxia after portal microcapsules implanted, which provided a monitoring method for early intervention

    Aquaporin 1 overexpression may enhance glioma tumorigenesis by interacting with the transcriptional regulation networks of Foxo4, Maz, and E2F families

    No full text
    Abstract Background The glioblastoma has served as a valuable experimental model system for investigating the growth and invasive properties of glioblastoma. Aquaporin-1 (AQP1) in facilitating cell migration and potentially contributing to tumor progression. In this study, we analyzed the role of AQP1 overexpression in glioblastoma and elucidated the main mechanisms involved. Methods AQP1 overexpression recombinant vector was introduced into C6 rat glioma cells to construct an AQP1 overexpression C6 cell line, and its effect on cell viability and migration ability was detected by MTT and Transwell. RNA was extracted by Trizol method for gene sequencing and transcriptomics analysis, and the differentially expressed genes (DEGs) were enriched for up- and downregulated genes by Principal component analysis (PCA), and the molecular mechanism of AQP1 overexpression was analyzed in comparison with the control group using the NCBI GEO database. Statistical analysis was performed using Mann-Whitney paired two tailed t test. Results The cell viability of AQP1-transfected cell lines increased by 23% and the mean distance traveled increased by 67% compared with the control group. Quantitative analysis of gene expression showed that there were 12,121 genes with an average transcripts per million (TPM) value greater than 1. DEGs accounted for 13% of the genes expressed, with the highest correlation with upregulated genes being FOXO4 and MAZ, and the highest with downregulated genes being E2F TFs. Conclusions AQP1 may be implicated in glioma formation by interacting with the transcriptional regulation networks involving the FOXO4, MAZ, and E2F1/2. These findings shed light on the potential significance of AQP1 in glioma pathogenesis and warrant further investigations to unravel the underlying molecular mechanisms
    corecore