1 research outputs found
Stability of 1-Bit Compressed Sensing in Sparse Data Reconstruction
1-bit compressing sensing (CS) is an important class of sparse optimization problems. This paper focuses on the stability theory for 1-bit CS with quadratic constraint. The model is rebuilt by reformulating sign measurements by linear equality and inequality constraints, and the quadratic constraint with noise is approximated by polytopes to any level of accuracy. A new concept called restricted weak RSP of a transposed sensing matrix with respect to the measurement vector is introduced. Our results show that this concept is a sufficient and necessary condition for the stability of 1-bit CS without noise and is a sufficient condition if the noise is available