47 research outputs found

    Observation of Blackbody Radiation Enhanced Superradiance in Ultracold Rydberg Gases

    Get PDF
    An ensemble of excited atoms can synchronize emission of light collectively in a process known as superradiance when its characteristic size is smaller than the wavelength of emitted photons. The underlying superradiance depends strongly on electromagnetic (photon) fields surrounding the atomic ensemble. High mode densities of microwave photons from 300 K blackbody radiation (BBR) significantly enhance decay rates of Rydberg states to neighbouring states, enabling superradiance that is not possible with bare vacuum induced spontaneous decay. Here we report observations of the superradiance of ultracold Rydberg atoms embedded in a bath of room-temperature photons. The temporal evolution of the Rydberg |nD to |(n + 1)P superradiant decay of Cs atoms (n the principal quantum number) is measured directly in free space. Theoretical simulations confirm the BBR enhanced superradiance in large Rydberg ensembles. We demonstrate that the van der Waals interactions between Rydberg atoms change the superradiant dynamics and modify the scaling of the superradiance. In the presence of static electric fields, we find that the superradiance becomes slow, potentially due to many-body interaction induced dephasing. Our study provides insights into many-body dynamics of interacting atoms coupled to thermal BBR, and might open a route to the design of blackbody thermometry at microwave frequencies via collective, dissipative photon-atom interactions

    Simultaneous identification and determination of flavonoids in Dendrobium officinale

    No full text
    Abstract Background The quality of material medicine resources has had a considerable impact on the development of the health industry, which has created a bottleneck for traditional Chinese medicine (TCM). Dendrobium officinale, which has been widely used for health prevention in TCM, has become a high-nutritive health food that is strongly recommended by many white-collar workers and people who pay more attention to their health. The aim of this study was to develop a method to authenticate and evaluate D. officinale from different origins via simultaneous qualitative and quantitative analyses of flavonoid glycosides. Ultra-high-performance liquid chromatography-electrospray ionization/mass spectrometry was used for the structural elucidation of the compounds. Results 9 characteristic peaks, including those representing 7 flavonoid C-glycosides and 2 flavonoid O-glycosides, were identified. Additionally, the contents of 5 representative flavonoid glucosides in 25 batches of D. officinale from different sources were determined. To further investigate the different sources of the 25 batch samples, principal component analysis (PCA) and hierarchical cluster analysis (HCA) were carried out. A study on the methodology revealed that all results were reliable. Conclusions This method is an efficient tool for the rapid identification of the different geographical origins of D. officinale and provides references for the quality evaluation of other natural products

    Purification, Characterization and Biological Activity of Polysaccharides from Dendrobium officinale

    No full text
    Polysaccharide (DOPA) from the stem of D. officinale, as well as two fractions (DOPA-1 and DOPA-2) of it, were isolated and purified by DEAE cellulose-52 and Sephacryl S-300 chromatography, and their structural characteristics and bioactivities were investigated. The average molecular weights of DOPA-1 and DOPA-2 were 394 kDa and 362 kDa, respectively. They were mainly composed of d-mannose, d-glucose, and had a backbone consisting of 1,4-linked β-d-Manp and 1,4-linked β-d-Glcp with O-acetyl groups. Bioactivity studies indicated that both DOPA and its purified fractions (DOPA-1 and DOPA-2) could activate splenocytes and macrophages. The D. officinale polysaccharides had stimulatory effects on splenocytes, T-lymphocytes and B-lymphocytes, promoting the cell viability and NO production of RAW 264.7 macrophages. Furthermore, DOPA, DOPA-1 and DOPA-2 were found to protect RAW 264.7 macrophages against hydrogen peroxide (H2O2)-induced oxidative injury by promoting cell viability, suppressing apoptosis and ameliorating oxidative lesions. These results suggested that D. officinale polysaccharides possessed antioxidant activity and mild immunostimulatory activity

    Correction to: Physicochemical properties of polysaccharides from Dendrobium officinale by fractional precipitation and their preliminary antioxidant and anti-HepG2 cells activities in vitro

    No full text
    The original version of the article [1] contained a mistake. The Figure legends are right, but the pictures in Figs. 3 and 4 are contrary. The corrected figures are given below

    Physicochemical properties of polysaccharides from Dendrobium officinale by fractional precipitation and their preliminary antioxidant and anti-HepG2 cells activities in vitro

    No full text
    Abstract Background Dendrobium officinale as a precious traditional Chinese herb is widely used in medicines and health supplements. Thus the extraction, purification and biological activities of polysaccharides from the stem of Dendrobium officinale have significant meaning on theory and application value. Methods The crude Dendrobium officinale polysaccharide (DOP) was obtained by hot water extraction- ethanol precipitation method, and four new polysaccharide fractions (DOP-40, DOP-50, DOP-60, and DOP-70) were further obtained from the crude DOP by fractional precipitation with ethanol method, then four fractions were further purified by Toyopearl-H65F gel resin. The molecular weight and monosaccharide composition of four purified fractions were determined by high performance anion exchange chromatography and high performance liquid chromatography. The antioxidant activities of them were evaluated by the reducing power assay, and the superoxide anion, 2,2-diphenyl-1-picrylhydrazyl (DPPH), and hydroxyl free radicals scavenging assays, respectively. Finally, the anticancer activities of them were investigated via the MTT assay and the western blot analysis using HepG2 cells. Results Among these four purified fractions were mainly composed of d-mannose and d-glucose with different molar ratios, and their average molecular weights were 999, 657, 243 and 50.3 kDa, respectively. What’s more, DOP-70 always exhibited the strongest antioxidant and anticancer activities, while DOP-40 and DOP-60 showed very close antioxidant and anticancer activities which were better than that of DOP-50. The western blotting analysis also showed that DOP-40, DOP-60, and DOP-70 induced apoptosis in HepG2 human liver cancer cells through the Bcl-2 and Bax-dependent pathway. Conclusions Fractional precipitation with ethanol could successfully apply to extract four new polysaccharide fractions from Dendrobium officinale stems, and the polysaccharide fractions possessed efficient antioxidant and anticancer activities, especially DOP-70

    Phosphoinositide 3-Kinase Gamma Contributes to Neuroinflammation in a Rat Model of Surgical Brain Injury

    No full text
    Neuroinflammation plays an important role in the pathophysiology of surgical brain injury (SBI). Phosphoinositide 3-kinase gamma (PI3Kγ), predominately expressed in immune and endothelial cells, activates multiple inflammatory responses. In the present study, we investigated the role of PI3Kγ and PI3Kγ-activated phosphodiesterase 3B (PDE3B) in neuroinflammation in a rat model of SBI. One hundred and fifty-two male Sprague Dawley rats (weight 280-350 g) were subjected to a partial right frontal lobe corticotomy model of SBI. A PI3Kγ pharmacological inhibitor (AS252424 or AS605240) was administered intraperitoneally. PI3Kγ siRNA, human recombinant active-PI3Kγ protein, or human recombinant active-PDE3B protein were administered intracerebroventricularly. Post-SBI assessments included neurobehavioral tests, brain water content, Western blot, and immunohistochemistry. Endogenous PI3Kγ levels were increased within peri-resection brain tissues after SBI, accompanied by increased brain water content and neurological functional deficits. There was a trend toward increased endogenous PDE3B phosphorylation after SBI. The selective PI3Kγ inhibitors AS252424 and AS605240 reduced brain water content surrounding corticotomy and improved neurological function after SBI. SBI increased and PI3Kγ inhibitor decreased levels of myeloperoxidase, cluster of differentiation 3, mast cell degranulation, E-selectin, and IL-1 in peri-resection brain tissues. Direct administration of human recombinant active-PI3Kγ protein and active-PDE3B protein countered the protective effect of AS252424. PI3Kγ siRNA reduced PI3Kγ levels, decreased brain water content within peri-resection brain tissues, and improved neurological function after SBI. Collectively, our findings suggest that PI3Kγ contributed to neuroinflammation after SBI. The use of selective PI3Kγ inhibitors may be a novel approach to ameliorating SBI via their anti-inflammation effects. Significance statement: Life-saving or elective neurosurgeries often involve unavoidable damages to neighboring, nondiseased brain tissues. Such surgical brain injury (SBI) is attributable exclusively to the neurosurgical procedure itself and may cause postoperative complications that exacerbate neurological function. Although the importance of this medical problem is fully acknowledged, intraoperative administration of adjunctive treatment such as steroids and mannitol to patients undergoing neurosurgery appear not to be efficient remedies for SBI. To date, the issue of perioperative neuroprotection specifically against SBI has not been well studied. Using a clinically relevant rat model of SBI, we are exploring a new neuroprotective strategy targeting phosphoinositide 3-kinase gamma (PI3Kγ). PI3Kγ activates multiple inflammatory responses. By attenuating neuroinflammation, selective PI3Kγ inhibition would limit postoperative complications and benefit neurological outcomes
    corecore