17,674 research outputs found

    Chiral phase transition and meson spectrum in improved soft-wall AdS/QCD

    Get PDF
    We investigate in detail the chiral thermal transition of QCD in an improved soft-wall AdS/QCD model with a simply modified 5D conformal mass of the bulk scalar field. We also present a calculation in this model for the light meson spectra and other low-energy characteristic quantities including the pion form factor, the pi-rho coupling constant and the decay constants of pi, rho, a_1, which are shown to result in a good agreement with experimental data except for the pion decay constant. The thermal behavior of chiral condensate is studied. It is found that such a simply improved soft-wall model incorporates the crossover behavior of chiral thermal transition indicated by lattice simulations. The expected chiral transition temperature can be obtained

    Lifshitz Scaling Effects on Holographic Superconductors

    Get PDF
    Via numerical and analytical methods, the effects of the Lifshitz dynamical exponent zz on holographic superconductors are studied in some detail, including ss wave and pp wave models. Working in the probe limit, we find that the behaviors of holographic models indeed depend on concrete value of zz. We obtain the condensation and conductivity in both Lifshitz black hole and soliton backgrounds with general zz. For both ss wave and pp wave models in the black hole backgrounds, as zz increases, the phase transition becomes more difficult and the growth of conductivity is suppressed. For the Lifshitz soliton backgrounds, when zz increases (z=1, 2, 3z=1,~2,~3), the critical chemical potential decreases in the ss wave cases but increases in the pp wave cases. For pp wave models in both Lifshitz black hole and soliton backgrounds, the anisotropy between the AC conductivity in different spatial directions is suppressed when zz increases. The analytical results uphold the numerical results.Comment: Typos corrected; Footnote added; References added; To be published in Nuclear Physics

    A Finite Time Analysis of Two Time-Scale Actor Critic Methods

    Full text link
    Actor-critic (AC) methods have exhibited great empirical success compared with other reinforcement learning algorithms, where the actor uses the policy gradient to improve the learning policy and the critic uses temporal difference learning to estimate the policy gradient. Under the two time-scale learning rate schedule, the asymptotic convergence of AC has been well studied in the literature. However, the non-asymptotic convergence and finite sample complexity of actor-critic methods are largely open. In this work, we provide a non-asymptotic analysis for two time-scale actor-critic methods under non-i.i.d. setting. We prove that the actor-critic method is guaranteed to find a first-order stationary point (i.e., J(θ)22ϵ\|\nabla J(\boldsymbol{\theta})\|_2^2 \le \epsilon) of the non-concave performance function J(θ)J(\boldsymbol{\theta}), with O~(ϵ2.5)\mathcal{\tilde{O}}(\epsilon^{-2.5}) sample complexity. To the best of our knowledge, this is the first work providing finite-time analysis and sample complexity bound for two time-scale actor-critic methods.Comment: 45 page

    Five-dimensional generalized f(R)f(R) gravity with curvature-matter coupling

    Get PDF
    The generalized f(R)f(R) gravity with curvature-matter coupling in five-dimensional (5D) spacetime can be established by assuming a hypersurface-orthogonal spacelike Killing vector field of 5D spacetime, and it can be reduced to the 4D formulism of FRW universe. This theory is quite general and can give the corresponding results to the Einstein gravity, f(R)f(R) gravity with both no-coupling and non-minimal coupling in 5D spacetime as special cases, that is, we would give the some new results besides previous ones given by Ref.\cite{60}. Furthermore, in order to get some insight into the effects of this theory on the 4D spacetime, by considering a specific type of models with f1(R)=f2(R)=αRmf_{1}(R)=f_{2}(R)=\alpha R^{m} and B(Lm)=Lm=ρB(L_{m})=L_{m}=-\rho, we not only discuss the constraints on the model parameters mm, nn, but also illustrate the evolutionary trajectories of the scale factor a(t)a(t), the deceleration parameter q(t)q(t) and the scalar field ϵ(t)\epsilon(t), ϕ(t)\phi(t) in the reduced 4D spacetime. The research results show that this type of f(R)f(R) gravity models given by us could explain the current accelerated expansion of our universe without introducing dark energy.Comment: arXiv admin note: text overlap with arXiv:0912.4581, arXiv:gr-qc/0411066 by other author
    corecore