4,494 research outputs found
Determinations of form factors for semileptonic decays and leptoquark constraints
By analyzing all existing measurements for ( ) decays, we find that the determinations of both the vector
form factor and scalar form factor for semileptonic
decays from these measurements are feasible. By taking the
parameterization of the one order series expansion of the and
, is determined to be , and the
shape parameters of and are
and , respectively. Combining with the average
of and lattice calculaltion, the is extracted
to be where the first error is experimental and the
second theoretical. Alternatively, the is extracted to be
by taking the as the value from the global
fit with the unitarity constraint of the CKM matrix. Moreover, using the
obtained form factors by lattice QCD, we re-analyze these
measurements in the context of new physics. Constraints on scalar leptoquarks
are obtained for different final states of semileptonic
decays
Next-to-leading order QCD corrections to associated production via the flavor-changing neutral-current couplings at hadron colliders
We present the complete next-to-leading order (NLO) QCD corrections to
associated production induced by the model-independent and
flavor-changing neutral-current couplings at hadron colliders, respectively.
Our results show that, for the coupling the NLO QCD corrections can
enhance the total cross sections by about 60% and 42%, and for the
coupling by about 51% and 43% at the Tevatron and LHC, respectively. The NLO
corrections, for the couplings, can enhance the total cross sections by
about 27%, and by about 42% for the coupling at the LHC. We also consider
the mixing effects between the and couplings for this process,
which can either be large or small depending on the values of the anomalous
couplings. Besides, the NLO corrections reduce the dependence of the total
cross sections on the renormalization or factorization scale significantly,
which lead to increased confidence on the theoretical predictions. And we also
evaluate the NLO corrections to several important kinematic distributions.Comment: Published version in Phys. Rev.
Next-to-leading order QCD corrections to the top quark associated with production via model-independent flavor-changing neutral-current couplings at hadron colliders
We present the complete next-to-leading order (NLO) QCD corrections to the
top quark associated with production induced by model-independent
and flavor-changing neutral-current (FCNC) couplings at hadron
colliders, respectively. We also consider the mixing effects between the
and FCNC couplings for this process. Our results show that,
for the couplings, the NLO QCD corrections can enhance the total
cross sections by about 50% and 40% at the Tevatron and LHC, respectively.
Including the contributions from the , FCNC couplings and their
mixing effects, the NLO QCD corrections can enhance the total cross sections by
about 50% for the and FCNC couplings, and by about the 80% for
the and FCNC couplings at the LHC, respectively. Moreover, the
NLO corrections reduce the dependence of the total cross section on the
renormalization and factorization scale significantly. We also evaluate the NLO
corrections for several important kinematic distributions.Comment: 25 pages, 16 figure
Loss prevention for hog farmers: Insurance, on-farm biosecurity practices, and vaccination
Using agricultural household survey data and claim records from insurers for the year 2009, this paper analyzes hog producers' choice of means of loss prevention and identifies the relationships among biosecurity practices, vaccination, and hog insurance. By combining one probit and two structural equations, we adopt three-stage estimations on a mixed-process model to obtain the results. The findings indicate that biosecurity practices provide the basic infrastructure for operating pig farms and complement both the usage of quality vaccines and the uptake of hog insurance. In addition, there is a strong relationship of substitution between quality of vaccine and demand for hog insurance. Hog farmers that implement better biosecurity practices are more likely to seek high-quality vaccines or buy into hog insurance schemes but not both. For those households with hog insurance, better biosecurity status, better management practices, and higher-quality vaccine significantly help to reduce loss ratios. However, we also find a moral hazard effect in that higher premium expenditure by the insured households might induce larger loss ratios.Biosecurity, hog insurance, loss prevention, vaccine,
Beneficial influence of nanocarbon on the aryliminopyridylnickel chloride catalyzed ethylene polymerization
A series of 1-aryliminoethylpyridine ligands (L1―L3) was synthesized by condensation of 2-acetylpyridine with 1-aminonaphthalene, 2-aminoanthracene or 1-aminopyrene, respectively. Reaction with nickel dichloride afforded the corresponding nickel (II) chloride complexes (Ni1–Ni3). All compounds were fully characterized and the molecular structures of Ni1 and Ni3 are reported. Upon activation with methylaluminoxane (MAO), all nickel complexes exhibit high activities for ethylene polymerization, producing waxes of low molecular weight and narrow polydispersity. The presence of multi-walled carbon nanotubes (MWCNTs) or few layer graphene (FLG) in the catalytic medium can lead to an increase of productivity associated to a modification of the polymer structure
Evolutionary Dynamics of Fearfulness and Boldness: A Stochastic Simulation Model
A stochastic simulation model is investigated for the evolution of anti-predator behavior in birds. The main goal is to reveal the effects of population size, predation threats, and energy lost per escape on the evolutionary dynamics of fearfulness and boldness. Two pure strategies, fearfulness and boldness, are assumed to have different responses for the predator attacks and nonlethal disturbance. On the other hand, the co-existence mechanism of fearfulness and boldness is also considered. For the effects of total population size, predation threats, and energy lost per escape, our main results show that: (i) the fearful (bold) individuals will be favored in a small (large) population, i.e. in a small (large) population, the fearfulness (boldness) can be considered to be an ESS; (ii) in a population with moderate size, fearfulness would be favored under moderate predator attacks; and (iii) although the total population size is the most important factor for the evolutionary dynamics of both fearful and bold individuals, the small energy lost per escape enables the fearful individuals to have the ability to win the advantage even in a relatively large population. Finally, we show also that the co-existence of fearful and bold individuals is possible when the competitive interactions between individuals are introduced
- …