10,501 research outputs found

    Modelling and control of the flame temperature distribution using probability density function shaping

    Get PDF
    This paper presents three control algorithms for the output probability density function (PDF) control of the 2D and 3D flame distribution systems. For the 2D flame distribution systems, control methods for both static and dynamic flame systems are presented, where at first the temperature distribution of the gas jet flames along the cross-section is approximated. Then the flame energy distribution (FED) is obtained as the output to be controlled by using a B-spline expansion technique. The general static output PDF control algorithm is used in the 2D static flame system, where the dynamic system consists of a static temperature model of gas jet flames and a second-order actuator. This leads to a second-order closed-loop system, where a singular state space model is used to describe the dynamics with the weights of the B-spline functions as the state variables. Finally, a predictive control algorithm is designed for such an output PDF system. For the 3D flame distribution systems, all the temperature values of the flames are firstly mapped into one temperature plane, and the shape of the temperature distribution on this plane can then be controlled by the 3D flame control method proposed in this paper. Three cases are studied for the proposed control methods and desired simulation results have been obtained

    Entropy engineering in inorganic non-metallic glass

    Get PDF
    Advances in developing high entropy alloys and ceramics with improved physical properties have greatly broadened their application field from aerospace industry, public transportation to nuclear plants. In this review, we describe the concept of entropy engineering as applicable to inorganic non-metallic glasses, especially for tailoring and enhancing their mechanical, electrical, and optical properties. We also present opportunities and challenges in calculating entropy of inorganic non-metallic glass systems, correlating entropy to glass formation, and in developing functional inorganic non-metallic glasses via the entropy concept

    Molecular cloning, structural analysis and expression of a zinc binding protein in cotton

    Get PDF
    The full-length zinc-binding protein (ZnBP) gene was cloned from a normalized cDNA library constructed from a cotton mutant (Xiangmian-18) during the gland-forming stage. The clone was sequenced and analysed. BLASTP analysis showed that the deduced amino acid sequence of ZnBP in Xiangmian-18 is similar to that in Arabidopsis thaliana (GenBank accession no. EFH46337.1) with an overall similarity of 77%. The cDNA insert comprises 654 base pairs (bp) and 217 amino acid residues. Its molecular weight is 24.6 kDa, and the theoretical pI is 9.33. The cotton ZnBP gene was cloned from the gDNA from Xiangmian-18 leaves. After sequencing the two fragments, a 1731 bp cotton ZnBP gene with three introns was identified. Using pET-28a(+) as a prokaryotic expression vector, the gene was expressed in Escherichia coli BL21(DE3). The conditions for achieving optimal ZnBP expression were 37°C, IPTG 1 mmol/L, 8 h and a shaker speed of 150 rpm. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis confirmed the correct expression of the protein. pCAMBIA2300-35S-OCS was used as a eukaryotic expression vector. The recombinant plasmid pCAMBIA2300-ZnBP was used to transform competent Agrobacterium GV3101 by the freeze-thaw method. Then, A. thaliana plants were transformed by the floral dipping method. Transformed plants were grown to maturity in a growth chamber. After screening on kanamycin-resistant half-strength Murashige and Skoog plates and polymerase chain reaction (PCR) analysis, two transgenic plant strains were obtained. Northern blot analysis showed that ZnBP expression was higher in homozygous plants than in wild-type plants. The differences between the phenotypes of homozygous and wild-type plants indicate that the ZnBP gene affects the growth and development of A. thaliana. The results of prokaryotic expression of ZnBP and overexpression of the ZnBP gene in A. thaliana improve our understanding of the function of this gene. Future studies should investigate the molecular mechanisms involved in gland morphogenesis in cotton.Key words: Gossypium hirsutum, pigment gland, zinc binding protein, prokaryotic expression, overexpression
    corecore