4,032 research outputs found
Spin-valley qubit in nanostructures of monolayer semiconductors: Optical control and hyperfine interaction
We investigate the optical control possibilities of spin-valley qubit carried
by single electrons localized in nanostructures of monolayer TMDs, including
small quantum dots formed by lateral heterojunction and charged impurities. The
quantum controls are discussed when the confinement induces valley
hybridization and when the valley hybridization is absent. We show that the
bulk valley and spin optical selection rules can be inherited in different
forms in the two scenarios, both of which allow the definition of spin-valley
qubit with desired optical controllability. We also investigate nuclear spin
induced decoherence and quantum control of electron-nuclear spin entanglement
via intervalley terms of the hyperfine interaction. Optically controlled
two-qubit operations in a single quantum dot are discussed.Comment: 17pages, 10 figure
Person Search with Natural Language Description
Searching persons in large-scale image databases with the query of natural
language description has important applications in video surveillance. Existing
methods mainly focused on searching persons with image-based or attribute-based
queries, which have major limitations for a practical usage. In this paper, we
study the problem of person search with natural language description. Given the
textual description of a person, the algorithm of the person search is required
to rank all the samples in the person database then retrieve the most relevant
sample corresponding to the queried description. Since there is no person
dataset or benchmark with textual description available, we collect a
large-scale person description dataset with detailed natural language
annotations and person samples from various sources, termed as CUHK Person
Description Dataset (CUHK-PEDES). A wide range of possible models and baselines
have been evaluated and compared on the person search benchmark. An Recurrent
Neural Network with Gated Neural Attention mechanism (GNA-RNN) is proposed to
establish the state-of-the art performance on person search
Angiogenesis and Vasculogenesis at 7-Day of Reperfused Acute Myocardial Infarction
Objectives 
This study is to investigate the angiogenesis and vasculogenesis at the first week of reperfused acute myocardial infarction (AMI).
Methods 
16 of mini-swines (20 to 30 Kg) were randomly assigned to the sham-operated group and the AMI group. The acute myocardial infarction and reperfusion model was created and the pig tail catheter was performed to monitor hemodynamics before left anterior descending coronary artery (LAD) occlusion, 90 min of LAD occlusion and 120 min of LAD reperfusion. Pathologic myocardial tissue was collected at 7-day of LAD reperfusion and further assessed by immunochemistry, dual immunochemistry, in-situ hybridization, real-time quantitative polymerase chain reaction and western blot. 
Results 
The infarcted area had higher FLK1 mRNA expression than sham-operated area and the normal area (all P<0.05), and the infarcted and marginal areas showed higher CD146 protein expression than the sham-operated area (all P<0.05), but the microvessel density (CD31 positive expression of microvessels/HP) was not significantly different between the infarcted area and the sham-operated area (8.92±3.05 vs 6.43±1.54) at 7-day of reperfused acute myocardial infarction (P>0.05). 
Conclusions 
FLK1 and CD146 expression significantly increase in the infarcted and marginal areas, and the microvessel density is not significantly different between the infarcted area and the sham-operated area, suggesting that angiogenesis and vasculogenesis in the infarcted area appear to high frequency of increase in 7-day of reperfused myocardial infarction. 

Bumpless Topology Transition
The topology transition problem of transmission networks is becoming
increasingly crucial with topological flexibility more widely leveraged to
promote high renewable penetration. This paper proposes a novel methodology to
address this problem. Aiming at achieving a bumpless topology transition
regarding both static and dynamic performance, this methodology utilizes
various eligible control resources in transmission networks to cooperate with
the optimization of line-switching sequence. Mathematically, a composite
formulation is developed to efficiently yield bumpless transition schemes with
AC feasibility and stability both ensured. With linearization of all
non-convexities involved and tractable bumpiness metrics, a convex
mixed-integer program firstly optimizes the line-switching sequence and partial
control resources. Then, two nonlinear programs recover AC feasibility, and
optimize the remaining control resources by minimizing the -norm
of associated linearized systems, respectively. The final transition scheme is
selected by accurate evaluation including stability verification using
time-domain simulations. Finally, numerical studies demonstrate the
effectiveness and superiority of the proposed methodology to achieve bumpless
topology transition.Comment: Accepted by TPWR
- …