13,012 research outputs found

    Design of Copolymeric Materials

    Full text link
    We devise a method for designing materials that will have some desired structural characteristics. We apply it to multiblock copolymers that have two different types of monomers, A and B. We show how to determine what sequence of A's and B's should be synthesised in order to give a particular structure and morphology. %For example in a melt of such %polymers, one may wish to engineer a body-centered %cubic structure. Using this method in conjunction with the theory of microphase separation developed by Leibler, we show it is possible to efficiently search for a desired morphology. The method is quite general and can be extended to design isolated heteropolymers, such as proteins, with desired structural characteristics. We show that by making certain approximations to the exact algorithm, a method recently proposed by Shakhnovich and Gutin is obtained. The problems with this method are discussed and we propose an improved approximate algorithm that is computationally efficient.Comment: 15 pages latex 2.09 and psfig, 1 postscript figure

    Symmetry-preserving Loop Regularization and Renormalization of QFTs

    Full text link
    A new symmetry-preserving loop regularization method proposed in \cite{ylw} is further investigated. It is found that its prescription can be understood by introducing a regulating distribution function to the proper-time formalism of irreducible loop integrals. The method simulates in many interesting features to the momentum cutoff, Pauli-Villars and dimensional regularization. The loop regularization method is also simple and general for the practical calculations to higher loop graphs and can be applied to both underlying and effective quantum field theories including gauge, chiral, supersymmetric and gravitational ones as the new method does not modify either the lagrangian formalism or the space-time dimension of original theory. The appearance of characteristic energy scale McM_c and sliding energy scale μs\mu_s offers a systematic way for studying the renormalization-group evolution of gauge theories in the spirit of Wilson-Kadanoff and for exploring important effects of higher dimensional interaction terms in the infrared regime.Comment: 13 pages, Revtex, extended modified version, more references adde

    Statistical analysis on spatial correlation of ionospheric day-to-day variability by using GPS and Incoherent Scatter Radar observations

    Get PDF
    In this paper, the spatial correlations of ionospheric day-to-day variability are investigated by statistical analysis on GPS and Incoherent Scatter Radar observations. The meridional correlations show significant (>0.8) correlations in the latitudinal blocks of about 6 degrees size on average. Relative larger correlations of TEC's day-to-day variabilities can be found between magnetic conjugate points, which may be due to the geomagnetic conjugacy of several factors for the ionospheric day-to-day variability. The correlation coefficients between geomagnetic conjugate points have an obvious decrease around the sunrise and sunset time at the upper latitude (60°) and their values are bigger between the winter and summer hemisphere than between the spring and autumn hemisphere. The time delay of sunrise (sunset) between magnetic conjugate points with a high dip latitude is a probable reason. Obvious latitude and local time variations of meridional correlation distance, latitude variations of zonal correlation distance, and altitude and local time variations of vertical correlation distance are detected. Furthermore, there are evident seasonal variations of meridional correlation distance at higher latitudes in the Northern Hemisphere and local time variations of zonal correlation distance at higher latitudes in the Southern Hemisphere. These variations can generally be interpreted by the variations of controlling factors, which may have different spatial scales. The influences of the occurrence of ionospheric storms could not be ignored. Further modeling and data analysis are needed to address this problem. We suggest that our results are useful in the specific modeling/forecasting of ionospheric variability and the constructing of a background covariance matrix in ionospheric data assimilation

    Production and decay of the neutral top-pion in high energy e+ee^{+}e^{-} colliders

    Full text link
    We study the production and decay of the neutral top-pion πt0\pi_{t}^{0} predicted by topcolor-assisted technicolor(TC2) theory. Our results show that, except the dominant decay modes bbˉb\bar{b}, tˉc\bar{t}c and gggg, the πt0\pi_{t}^{0} can also decay into γγ\gamma\gamma and ZγZ \gamma modes. It can be significantly produced at high energy e+ee^{+}e^{-} collider(LC) experiments via the processes e+eπt0γe^{+}e^{-}\to \pi_{t}^{0}\gamma and e+eZπt0e^{+}e^{-}\to Z\pi_{t}^{0}. We further calculate the production cross sections of the processes e+eγπt0γtˉce^{+}e^{-}\to\gamma\pi_{t}^{0}\to\gamma\bar{t}c and e+eZπt0Ztˉce^{+}e^{-}\to Z\pi_{t}^{0}\to Z\bar{t}c. We find that the signatures of the neutral top-pion πt0\pi_{t}^{0} can be detected via these processes.Comment: Latex file, 13 Pages, 6 eps figures. to be published in Phys.Rev.

    A gapless charge mode induced by the boundary states in the half-filled Hubbard open-chain

    Full text link
    We discuss the ground state and some excited states of the half-filled Hubbard model defined on an open chain with L sites, where only one of the boundary sites has a different value of chemical potential. We consider the case when the boundary site has a negative chemical potential -p and the Hubbard coupling U is positive. By an analytic method we show that when p is larger than the transfer integral some of the ground-state solutions of the Bethe ansatz equations become complex-valued. It follows that there is a ``surface phase transition'' at some critical value p_c; when p<p_c all the charge excitations have the gap for the half-filled band, while there exists a massless charge mode when p>p_c.Comment: Revtex, 25 pages, 3 eps figures; Full revision with Appendixes adde

    Multi-Stability of Electromagnetically Induced Transparency in Atom-Assisted Optomechanical Cavities

    Full text link
    We study how an oscillating mirror affects the electromagnetically induced transparency (EIT) of an atomic ensemble, which is confined in a gas cell placed inside a micro-cavity with an oscillating mirror in one end. The oscillating mirror is modeled as a quantum mechanical harmonic oscillator. The cavity field acts as a probe light of the EIT system and also produces a light pressure on the oscillating mirror. The back-action from the mirror to the cavity field results in several (from one to five) steady-states for this atom-assisted optomechanical cavity, producing a complex structure in its EIT. We calculate the susceptibility with respect to the few (from one to three) stable solutions found here for the equilibrium positions of the oscillating mirror. We find that the EIT of the atomic ensemble can be significantly changed by the oscillating mirror, and also that the various steady states of the mirror have different effects on the EIT.Comment: 10 pages, 9 figure

    Flavor changing t -> c l_1^- l_2^+ decay in the general two Higgs doublet model

    Get PDF
    We study the flavor changing t-> c l_1^- l_2^+ decay in the framework of the general two Higgs doublet model, the so called model III. We predict the branching ratio for l_1=\tau, l_2=\mu at the order of magnitude of BR \sim 10^{-8}.Comment: 12 Pages, 5 Figure

    Precision determination of absolute neutron flux

    Full text link
    A technique for establishing the total neutron rate of a highly-collimated monochromatic cold neutron beam was demonstrated using a method of an alpha-gamma counter. The method involves only the counting of measured rates and is independent of neutron cross sections, decay chain branching ratios, and neutron beam energy. For the measurement, a target of 10B-enriched boron carbide totally absorbed the neutrons in a monochromatic beam, and the rate of absorbed neutrons was determined by counting 478keV gamma rays from neutron capture on 10B with calibrated high-purity germanium detectors. A second measurement based on Bragg diffraction from a perfect silicon crystal was performed to determine the mean de Broglie wavelength of the beam to a precision of 0.024 %. With these measurements, the detection efficiency of a neutron monitor based on neutron absorption on 6Li was determined to an overall uncertainty of 0.058 %. We discuss the principle of the alpha-gamma method and present details of how the measurement was performed including the systematic effects. We also describe how this method may be used for applications in neutron dosimetry and metrology, fundamental neutron physics, and neutron cross section measurements.Comment: 44 page
    corecore