13,289 research outputs found
Neutron star matter in the quark-meson coupling model in strong magnetic fields
The effects of strong magnetic fields on neutron star matter are investigated
in the quark-meson coupling (QMC) model. The QMC model describes a nuclear
many-body system as nonoverlapping MIT bags in which quarks interact through
self-consistent exchange of scalar and vector mesons in the mean-field
approximation. The results of the QMC model are compared with those obtained in
a relativistic mean-field (RMF) model. It is found that quantitative
differences exist between the QMC and RMF models, while qualitative trends of
the magnetic field effects on the equation of state and composition of neutron
star matter are very similar.Comment: 16 pages, 4 figure
Research Program towards Observation of Neutrino-Nucleus Coherent Scattering
The article describes the research program pursued by the TEXONO
Collaboration towards an experiment to observe coherent scattering between
neutrinos and the nucleus at the power reactor. The motivations of studying
this process are surveyed. In particular, a threshold of 100-200 eV has been
achieved with an ultra-low-energy germanium detector prototype. This detection
capability at low energy can also be adapted to conduct searches of Cold Dark
Matter in the low-mass region as well as to enhance the sensitivities in the
study of neutrino magnetic moments.Comment: 5 pages, 8 figures ; Proceedings of TAUP-2005 Workshop, Spain, 2005.
Updated on 2006/9/15 for Proceedings of Neutrino-2006 Conference, Santa Fe,
200
Generalized - Model
By parameterizing the t-j model we present a new electron correlation model
with one free parameter for high-temperature superconductivity. This model is
of symmetry. The energy spectrums are shown to be modulated by
the free parameter in the model. The solution and symmetric structures of the
Hilbert space, as well as the Bethe ansatz approach are discussed for special
cases.Comment: 13 page, Latex, to appear in J. Phys.
The Abelian Manna model on two fractal lattices
We analyze the avalanche size distribution of the Abelian Manna model on two
different fractal lattices with the same dimension d_g=ln(3)/ln(2), with the
aim to probe for scaling behavior and to study the systematic dependence of the
critical exponents on the dimension and structure of the lattices. We show that
the scaling law D(2-tau)=d_w generalizes the corresponding scaling law on
regular lattices, in particular hypercubes, where d_w=2. Furthermore, we
observe that the lattice dimension d_g, the fractal dimension of the random
walk on the lattice d_w, and the critical exponent D, form a plane in 3D
parameter space, i.e. they obey the linear relationship D=0.632(3) d_g +
0.98(1) d_w - 0.49(3).Comment: 4 pages, 3 figures, 3 tables, submitted to PRE as a Brief Repor
Modelling and control of the flame temperature distribution using probability density function shaping
This paper presents three control algorithms for the output probability density function (PDF) control of the 2D and 3D flame distribution systems. For the 2D flame distribution systems, control methods for both static and dynamic flame systems are presented, where at first the temperature distribution of the gas jet flames along the cross-section is approximated. Then the flame energy distribution (FED) is obtained as the output to be controlled by using a B-spline expansion technique. The general static output PDF control algorithm is used in the 2D static flame system, where the dynamic system consists of a static temperature model of gas jet flames and a second-order actuator. This leads to a second-order closed-loop system, where a singular state space model is used to describe the dynamics with the weights of the B-spline functions as the state variables. Finally, a predictive control algorithm is designed for such an output PDF system. For the 3D flame distribution systems, all the temperature values of the flames are firstly mapped into one temperature plane, and the shape of the temperature distribution on this plane can then be controlled by the 3D flame control method proposed in this paper. Three cases are studied for the proposed control methods and desired simulation results have been obtained
A new problem with cross-species amplification of microsatellites: Generation of non-homologous products
Microsatellites have been widely used in studies on population genetics, ecology and evolutionary biology. However, microsatellites are not always available for the species to be studied and their isolation could be time-consuming. In order to save time and effort researchers often rely on cross-species amplification. We revealed a new problem of microsatellite cross-species amplification in addition to size homoplasy by analyzing the sequences of electromorphs from seven catfish species belonging to three different families (Clariidae, Heteropneustidae and Pimelodidae). A total of 50 different electromorphs were amplified from the seven catfish species by using primers for 4 microsatellite loci isolated from the species Clarias batrachus. Two hundred and forty PCR-products representing all 50 electromorphs were sequenced and analyzed. Primers for two loci amplified specific products from orthologous loci in all species tested, whereas primers for the other two loci produced specific and polymorphic bands from some non-orthologous loci, even in closely related non-source species. Size homoplasy within the source species was not obvious, whereas extensive size homoplasy across species were detected at three loci, but not at the fourth one. These data suggest that amplification of products from non-orthologous loci and appearance of size homoplasy by cross-amplification are locus dependent, and do not reflect phylogenetic relationship. Amplification of non-orthologous loci and appearance of size homoplasy will lead to obvious complications in phylogenetic interference, population genetic and evolutionary studies. Therefore, we propose that sequence analysis of cross-amplification products should be conducted prior to application of cross-species amplification of microsatellites
Multiscale Technicolor and the Zbb-bar Vertex
We estimate the correction to the Zbb-bar vertex arising from the exchanges
of the sideways extended technicolor (ETC) boson and the flavor-diagonal ETC
boson in the multiscale walking technicolor model. The obtained result is too
large to explain the present data. However, if we introduce a new self-
interaction for the top quark to induce the top quark condensate serving as the
origin of the large top quark mass, the corrected R_b=Gamma_b/Gamma_h can be
consistent with the recent LEP data. The corresponding correction to
R_c=Gamma_c/Gamma_h is shown to be negligibly small.Comment: 9-page LaTex fil
Maximally Symmetric Minimal Unification Model SO(32) with Three Families in Ten Dimensional Space-time
Based on a maximally symmetric minimal unification hypothesis and a quantum
charge-dimension correspondence principle, it is demonstrated that each family
of quarks and leptons belongs to the Majorana-Weyl spinor representation of
14-dimensions that relate to quantum spin-isospin-color charges. Families of
quarks and leptons attribute to a spinor structure of extra 6-dimensions that
relate to quantum family charges. Of particular, it is shown that 10-dimensions
relating to quantum spin-family charges form a motional 10-dimensional quantum
space-time with a generalized Lorentz symmetry SO(1,9), and 10-dimensions
relating to quantum isospin-color charges become a motionless 10-dimensional
quantum intrinsic space. Its corresponding 32-component fermions in the spinor
representation possess a maximal gauge symmetry SO(32). As a consequence, a
maximally symmetric minimal unification model SO(32) containing three families
in ten dimensional quantum space-time is naturally obtained by choosing a
suitable Majorana-Weyl spinor structure into which quarks and leptons are
directly embedded. Both resulting symmetry and dimensions coincide with the
ones of type I string and heterotic string SO(32) in string theory.Comment: 17 pages, RevTex, published version with minor typos correcte
Recommended from our members
Thermally stimulated relaxation and behaviors of oxygen vacancies in SrTiO<inf>3</inf> single crystals with (100), (110) and (111) orientations
Abstract
The strontium titanate (SrTiO3) single crystals with different orientations of (100), (110) and (111) were investigated using thermally stimulated depolarization current (TSDC) measurements, which has been proved to be an effective strategy to fundamentally study the relationship between relaxation phenomena and defect chemistry in dielectrics. The origins of different relaxations in SrTiO3 crystals were identified and the activation energy of oxygen vacancies was estimated from TSDC measurements. It was further found that oxygen-treated SrTiO3 crystals exhibit different relaxation behaviors. Noticeable changes of thermal relaxation associated with oxygen vacancies have taken place in relation to the crystalline anisotropy. The SrTiO3 (110) samples display higher concentration and activation energy of oxygen vacancies. First-principles calculations were carried out on SrTiO3 (110) crystals to study the effect of oxygen vacancy on different surface microstructure. From the resulting minimum formation energy of 0.63 eV, it demonstrates that the oxygen vacancies tend to form on the TiO-terminated surfaces. Considering the band structure, oxygen vacancies near the surface contribute to the transition of crystal from insulator to metallic characteristic.</jats:p
- …