14,528 research outputs found

    Neutron star matter in the quark-meson coupling model in strong magnetic fields

    Get PDF
    The effects of strong magnetic fields on neutron star matter are investigated in the quark-meson coupling (QMC) model. The QMC model describes a nuclear many-body system as nonoverlapping MIT bags in which quarks interact through self-consistent exchange of scalar and vector mesons in the mean-field approximation. The results of the QMC model are compared with those obtained in a relativistic mean-field (RMF) model. It is found that quantitative differences exist between the QMC and RMF models, while qualitative trends of the magnetic field effects on the equation of state and composition of neutron star matter are very similar.Comment: 16 pages, 4 figure

    Evaluating tag-based information access in image collections

    Get PDF
    The availability of social tags has greatly enhanced access to information. Tag clouds have emerged as a new "social" way to find and visualize information, providing both one-click access to information and a snapshot of the "aboutness" of a tagged collection. A range of research projects explored and compared different tag artifacts for information access ranging from regular tag clouds to tag hierarchies. At the same time, there is a lack of user studies that compare the effectiveness of different types of tag-based browsing interfaces from the users point of view. This paper contributes to the research on tag-based information access by presenting a controlled user study that compared three types of tag-based interfaces on two recognized types of search tasks - lookup and exploratory search. Our results demonstrate that tag-based browsing interfaces significantly outperform traditional search interfaces in both performance and user satisfaction. At the same time, the differences between the two types of tag-based browsing interfaces explored in our study are not as clear. Copyright 2012 ACM

    Neutral top-pion and the rare top decays t→cliljt\to c l_{i} l_{j}

    Full text link
    We study the rare top decays t→clilj(l=τ,μ,ore)t\to c l_{i} l_{j}(l=\tau,\mu,or e) in the framework of topcolor-assisted technicolor(TC2TC2) models. We find that the neutral top-pion πt0\pi_{t}^{0} can produce significant contributions to these processes via the flavor changing couplings πt0tˉc\pi_{t}^{0} \bar{t} c and πt0lilj\pi_{t}^{0} l_{i} l_{j}. For the πt0\pi_{t}^{0} mass mπt=150GeVm_{\pi_{t}}=150 GeV and the parameter ϵ=0.08\epsilon=0.08, the branching ratio BrBr(t→cττ)\to c \tau \tau) can reach 7.1×10−77.1\times10^{-7}. Taking into account the constraints of the present experimental limit of the process μ→eγ\mu\to e \gamma on the free parameters of TC2TC2 models, we find that the value of BrBr(t→cτμt\to c \tau \mu)≈\approxBrBr(t→cτet\to c \tau e) is in the range of 1.8×10−10∼1.7×10−8\times10^{-10}\sim1.7\times10^{-8}.Comment: To be published in Phys.

    Multi-Atomic Mirror for Perfect Reflection of Single Photons in A Wide Band of Frequency

    Full text link
    A resonant two level atom doped in one dimensional waveguide behaves as a mirror, but this single-atom "mirror" can only reflect single photon perfectly at a specific frequency. For a one dimensional coupled-resonator waveguide, we propose to extend the perfect reflection region from a specific frequency to a wide band by placing many atoms individually in the resonators in a finite coordinate region of the waveguide. Such a doped resonator array promises us to control the propagation of a practical photon wave packet with certain momentum distribution instead of a single photon, which is ideally represented by a plane wave with specific momentum. The studies based on the discrete-coordinate scattering theory display that such hybrid structure indeed provides a near-perfect reflection for single photon in a wide band. We also calculated photon group velocity distribution, which shows that the perfect reflection with wide band exactly corresponds to the stopping light region.Comment: 8 pages, 10 figure

    Probing Topcolor-Assisted Technicolor from Like-sign Top Pair Production at LHC

    Full text link
    The topcolor-assisted technicolor (TC2) theory predicts tree-level flavor-changing neutral-current (FCNC) top quark Yukawa couplings with top-pions. Such FCNC interactions will induce like-sign top quark pair productions at CERN Large Hadron Collider (LHC). While these rare productions are far below the observable level in the Standard Model and other popular new physics models such as the Minimal Supersymmetric Model, we find that in a sound part of parameter space the TC2 model can enhance the production cross sections to several tens of fb and thus may be observable at the LHC due to rather low backgrounds. Searching for these productions at the LHC will serve as an excellent probe for the TC2 model.Comment: 10 pages, 6 fig

    Inherent Mach-Zehnder interference with "which-way" detection for single particle scattering in one dimension

    Full text link
    We study the coherent transport of single photon in a one-dimensional coupled-resonator-array, "non-locally" coupled to a two-level system. Since its inherent structure is a Mach-Zehnder interferometer, we explain the destructive interference phenomenon of the transmission spectrums according to the effect of which-way detection. The quantum realization of the present model is a nano-electromechanical resonator arrays with two nearest resonators coupled to a single spin via their attached magnetic tips. Its classical simulation is a waveguide of coupled defected cavity array with double couplings to a side defected cavity.Comment: 5 papges, 4 figure

    Production and decay of the neutral top-pion in high energy e+e−e^{+}e^{-} colliders

    Full text link
    We study the production and decay of the neutral top-pion πt0\pi_{t}^{0} predicted by topcolor-assisted technicolor(TC2) theory. Our results show that, except the dominant decay modes bbˉb\bar{b}, tˉc\bar{t}c and gggg, the πt0\pi_{t}^{0} can also decay into γγ\gamma\gamma and ZγZ \gamma modes. It can be significantly produced at high energy e+e−e^{+}e^{-} collider(LC) experiments via the processes e+e−→πt0γe^{+}e^{-}\to \pi_{t}^{0}\gamma and e+e−→Zπt0e^{+}e^{-}\to Z\pi_{t}^{0}. We further calculate the production cross sections of the processes e+e−→γπt0→γtˉce^{+}e^{-}\to\gamma\pi_{t}^{0}\to\gamma\bar{t}c and e+e−→Zπt0→Ztˉce^{+}e^{-}\to Z\pi_{t}^{0}\to Z\bar{t}c. We find that the signatures of the neutral top-pion πt0\pi_{t}^{0} can be detected via these processes.Comment: Latex file, 13 Pages, 6 eps figures. to be published in Phys.Rev.

    A Raman study of the Charge-Density-Wave State in A0.3_{0.3}MoO3_3 (A = K,Rb)

    Get PDF
    We report a comparative Raman spectroscopic study of the quasi-one-dimensional charge-density-wave systems \ab (A = K, Rb). The temperature and polarization dependent experiments reveal charge-coupled vibrational Raman features. The strongly temperature-dependent collective amplitudon mode in both materials differ by about 3 cm, thus revealing the role of alkali atom. We discus the observed vibrational features in terms of charge-density-wave ground state accompanied by change in the crystal symmetry. A frequency-kink in some modes seen in \bb between T = 80 K and 100 K supports the first-order lock-in transition, unlike \rb. The unusually sharp Raman lines(limited by the instrumental response) at very low temperatures and their temperature evolution suggests that the decay of the low energy phonons is strongly influenced by the presence of the temperature dependent charge density wave gap.Comment: 13 pages, 7 figure

    Reactive direction control for a mobile robot: A locust-like control of escape direction emerges when a bilateral pair of model locust visual neurons are integrated

    Get PDF
    Locusts possess a bilateral pair of uniquely identifiable visual neurons that respond vigorously to the image of an approaching object. These neurons are called the lobula giant movement detectors (LGMDs). The locust LGMDs have been extensively studied and this has lead to the development of an LGMD model for use as an artificial collision detector in robotic applications. To date, robots have been equipped with only a single, central artificial LGMD sensor, and this triggers a non-directional stop or rotation when a potentially colliding object is detected. Clearly, for a robot to behave autonomously, it must react differently to stimuli approaching from different directions. In this study, we implement a bilateral pair of LGMD models in Khepera robots equipped with normal and panoramic cameras. We integrate the responses of these LGMD models using methodologies inspired by research on escape direction control in cockroaches. Using ‘randomised winner-take-all’ or ‘steering wheel’ algorithms for LGMD model integration, the khepera robots could escape an approaching threat in real time and with a similar distribution of escape directions as real locusts. We also found that by optimising these algorithms, we could use them to integrate the left and right DCMD responses of real jumping locusts offline and reproduce the actual escape directions that the locusts took in a particular trial. Our results significantly advance the development of an artificial collision detection and evasion system based on the locust LGMD by allowing it reactive control over robot behaviour. The success of this approach may also indicate some important areas to be pursued in future biological research
    • …
    corecore