36 research outputs found

    Facial Video-based Remote Physiological Measurement via Self-supervised Learning

    Full text link
    Facial video-based remote physiological measurement aims to estimate remote photoplethysmography (rPPG) signals from human face videos and then measure multiple vital signs (e.g. heart rate, respiration frequency) from rPPG signals. Recent approaches achieve it by training deep neural networks, which normally require abundant facial videos and synchronously recorded photoplethysmography (PPG) signals for supervision. However, the collection of these annotated corpora is not easy in practice. In this paper, we introduce a novel frequency-inspired self-supervised framework that learns to estimate rPPG signals from facial videos without the need of ground truth PPG signals. Given a video sample, we first augment it into multiple positive/negative samples which contain similar/dissimilar signal frequencies to the original one. Specifically, positive samples are generated using spatial augmentation. Negative samples are generated via a learnable frequency augmentation module, which performs non-linear signal frequency transformation on the input without excessively changing its visual appearance. Next, we introduce a local rPPG expert aggregation module to estimate rPPG signals from augmented samples. It encodes complementary pulsation information from different face regions and aggregate them into one rPPG prediction. Finally, we propose a series of frequency-inspired losses, i.e. frequency contrastive loss, frequency ratio consistency loss, and cross-video frequency agreement loss, for the optimization of estimated rPPG signals from multiple augmented video samples and across temporally neighboring video samples. We conduct rPPG-based heart rate, heart rate variability and respiration frequency estimation on four standard benchmarks. The experimental results demonstrate that our method improves the state of the art by a large margin.Comment: IEEE Transactions on Pattern Analysis and Machine Intelligenc

    Enhancing Space-time Video Super-resolution via Spatial-temporal Feature Interaction

    Full text link
    The target of space-time video super-resolution (STVSR) is to increase both the frame rate (also referred to as the temporal resolution) and the spatial resolution of a given video. Recent approaches solve STVSR with end-to-end deep neural networks. A popular solution is to first increase the frame rate of the video; then perform feature refinement among different frame features; and last increase the spatial resolutions of these features. The temporal correlation among features of different frames is carefully exploited in this process. The spatial correlation among features of different (spatial) resolutions, despite being also very important, is however not emphasized. In this paper, we propose a spatial-temporal feature interaction network to enhance STVSR by exploiting both spatial and temporal correlations among features of different frames and spatial resolutions. Specifically, the spatial-temporal frame interpolation module is introduced to interpolate low- and high-resolution intermediate frame features simultaneously and interactively. The spatial-temporal local and global refinement modules are respectively deployed afterwards to exploit the spatial-temporal correlation among different features for their refinement. Finally, a novel motion consistency loss is employed to enhance the motion continuity among reconstructed frames. We conduct experiments on three standard benchmarks, Vid4, Vimeo-90K and Adobe240, and the results demonstrate that our method improves the state of the art methods by a considerable margin. Our codes will be available at https://github.com/yuezijie/STINet-Space-time-Video-Super-resolution

    LoSh: Long-Short Text Joint Prediction Network for Referring Video Object Segmentation

    Full text link
    Referring video object segmentation (RVOS) aims to segment the target instance referred by a given text expression in a video clip. The text expression normally contains sophisticated description of the instance's appearance, action, and relation with others. It is therefore rather difficult for a RVOS model to capture all these attributes correspondingly in the video; in fact, the model often favours more on the action- and relation-related visual attributes of the instance. This can end up with partial or even incorrect mask prediction of the target instance. We tackle this problem by taking a subject-centric short text expression from the original long text expression. The short one retains only the appearance-related information of the target instance so that we can use it to focus the model's attention on the instance's appearance. We let the model make joint predictions using both long and short text expressions; and insert a long-short cross-attention module to interact the joint features and a long-short predictions intersection loss to regulate the joint predictions. Besides the improvement on the linguistic part, we also introduce a forward-backward visual consistency loss, which utilizes optical flows to warp visual features between the annotated frames and their temporal neighbors for consistency. We build our method on top of two state of the art pipelines. Extensive experiments on A2D-Sentences, Refer-YouTube-VOS, JHMDB-Sentences and Refer-DAVIS17 show impressive improvements of our method.Code is available at https://github.com/LinfengYuan1997/Losh.Comment: CVPR202

    Millimeter-Wave MIMO-NOMA based Positioning System for Internet of Things Applications

    Get PDF

    Large Model driven Radiology Report Generation with Clinical Quality Reinforcement Learning

    Full text link
    Radiology report generation (RRG) has attracted significant attention due to its potential to reduce the workload of radiologists. Current RRG approaches are still unsatisfactory against clinical standards. This paper introduces a novel RRG method, \textbf{LM-RRG}, that integrates large models (LMs) with clinical quality reinforcement learning to generate accurate and comprehensive chest X-ray radiology reports. Our method first designs a large language model driven feature extractor to analyze and interpret different regions of the chest X-ray image, emphasizing specific regions with medical significance. Next, based on the large model's decoder, we develop a multimodal report generator that leverages multimodal prompts from visual features and textual instruction to produce the radiology report in an auto-regressive way. Finally, to better reflect the clinical significant and insignificant errors that radiologists would normally assign in the report, we introduce a novel clinical quality reinforcement learning strategy. It utilizes the radiology report clinical quality (RadCliQ) metric as a reward function in the learning process. Extensive experiments on the MIMIC-CXR and IU-Xray datasets demonstrate the superiority of our method over the state of the art

    Explicit Interaction for Fusion-Based Place Recognition

    Full text link
    Fusion-based place recognition is an emerging technique jointly utilizing multi-modal perception data, to recognize previously visited places in GPS-denied scenarios for robots and autonomous vehicles. Recent fusion-based place recognition methods combine multi-modal features in implicit manners. While achieving remarkable results, they do not explicitly consider what the individual modality affords in the fusion system. Therefore, the benefit of multi-modal feature fusion may not be fully explored. In this paper, we propose a novel fusion-based network, dubbed EINet, to achieve explicit interaction of the two modalities. EINet uses LiDAR ranges to supervise more robust vision features for long time spans, and simultaneously uses camera RGB data to improve the discrimination of LiDAR point clouds. In addition, we develop a new benchmark for the place recognition task based on the nuScenes dataset. To establish this benchmark for future research with comprehensive comparisons, we introduce both supervised and self-supervised training schemes alongside evaluation protocols. We conduct extensive experiments on the proposed benchmark, and the experimental results show that our EINet exhibits better recognition performance as well as solid generalization ability compared to the state-of-the-art fusion-based place recognition approaches. Our open-source code and benchmark are released at: https://github.com/BIT-XJY/EINet

    A Novel Non-Volatile Inverter-based CiM: Continuous Sign Weight Transition and Low Power on-Chip Training

    Full text link
    In this work, we report a novel design, one-transistor-one-inverter (1T1I), to satisfy high speed and low power on-chip training requirements. By leveraging doped HfO2 with ferroelectricity, a non-volatile inverter is successfully demonstrated, enabling desired continuous weight transition between negative and positive via the programmable threshold voltage (VTH) of ferroelectric field-effect transistors (FeFETs). Compared with commonly used designs with the similar function, 1T1I uniquely achieves pure on-chip-based weight transition at an optimized working current without relying on assistance from off-chip calculation units for signed-weight comparison, facilitating high-speed training at low power consumption. Further improvements in linearity and training speed can be obtained via a two-transistor-one-inverter (2T1I) design. Overall, focusing on energy and time efficiencies, this work provides a valuable design strategy for future FeFET-based computing-in-memory (CiM)

    A promoting role of androgen receptor in androgen-sensitive and -insensitive prostate cancer cells

    Get PDF
    Although the vital role of the androgen receptor (AR) has been well demonstrated in primary prostate cancers, its role in the androgen-insensitive prostate cancers still remains unclear. Here, we used a small hairpin RNA approach to directly assess AR activity in prostate cancer cells. Reduction of AR expression in the two androgen-sensitive prostate cancer cell lines, LNCaP and LAPC4, significantly decreased AR-mediated transcription and cell growth. Intriguingly, in two androgen-insensitive prostate cell lines, LNCaP-C42B4 and CWR22Rv1, knockdown of AR expression showed a more pronounced effect on AR-induced transcription and cell growth than androgen depletion. Using cDNA microarrays, we also compared the transcriptional profiles induced by either androgen depletion or AR knockdown. Although a significant number of transcripts appear to be regulated by both androgen depletion and AR knockdown, we observed a subset of transcripts affected only by androgen depletion but not by AR knockdown, and vice versa. Finally, we demonstrated a direct role for AR in promoting tumor formation and growth in a xenograft model. Taken together, our results elucidate an important role for the AR in androgen-insensitive prostate cancer cells, and suggest that AR can be used as a therapeutic target for androgen-insensitive prostate cancers
    corecore