1,683 research outputs found

    Gravitational waves with dark matter minispikes: the combined effect

    Full text link
    It was shown that the dark matter(DM) minihalo around an intermediate mass black hole(IMBH) can be redistributed into a cusp, called the DM minispike. We consider an intermediate-mass-ratio inspiral consisting of an IMBH harbored in a DM minispike with nonannihilating DM particles and a small black hole(BH) orbiting around it. We investigate gravitational waves(GWs) produced by this system and analyze the waveforms with the comprehensive consideration of gravitational pull, dynamical friction and accretion of the minispike and calculate the time difference and phase difference caused by it. We find that for a certain range of frequency, the inspiralling time of the system is dramatically reduced for smaller central IMBH and large density of DM. For the central IMBH with 105M⊙10^5M_\odot, the time of merger is ahead, which can be distinguished by LISA, Taiji and Tianqin. We focus on the effect of accretion and compare it with that of gravitational pull and friction. We find that the accretion mass is a small quantity compared to the initial mass of the small BH and the accretion effect is inconspicuous compared with friction. However, the accumulated phase shift caused by accretion is large enough to be detected by LISA, Taiji and Tianqin, which indicate that the accretion effect can not be ignored in the detection of GWs.Comment: 10 pages, 14 figure

    (E)-4-{[2-(2-Furylcarbon­yl)hydrazinyl­idene]meth­yl}-2-meth­oxy­phenyl acetate

    Get PDF
    The mol­ecule of the title Schiff base compound, C15H14N2O5, was obtained from a condensation reaction of 4-acet­oxy-3-meth­oxy­benzaldehyde and 2-furyl­carbonyl­hydrazide. In the mol­ecule, the furyl ring makes a dihedral angle of 14.63 (10)° with the benzene ring. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains along the b axis. Futhermore, weak C—H⋯O inter­actions connect the chains, forming corrugated layers parallel to (001). The dihedral angle between the rings is 14.63 (10)°

    Dark matter: an efficient catalyst for intermediate-mass-ratio-inspiral events

    Full text link
    Gravitational waves (GWs) can be produced if a stellar compact object, such as a black hole (BH) or neutron star, inspirals into an intermediate-massive black hole (IMBH) of (103∼105) M⊙(10^3 \sim 10^5)\,M_\odot. Such a system may be produced in the center of a globular cluster (GC) or a nuclear star cluster (NSC), and is known as an intermediate- or extreme-mass-ratio inspiral (IMRI or EMRI). Motivated by the recent suggestions that dark matter minispikes could form around IMBHs, we study the effect of dynamical friction against DM on the merger rate of IMRIs/EMRIs. We find that the merger timescale of IMBHs with BHs and NSs would be shortened by two to three orders of magnitude. As a result, the event rate of IMRIs/EMRIs are enhanced by orders of magnitude relative to that in the case of no DM minispikes. In the most extreme case where IMBHs are small and the DM minispikes have a steep density profile, all the BH in GCs and NSCs might be exhausted so that the mergers with NSs would dominate the current IMRIs/EMRIs. Our results suggest that the mass function of the IMBHs below 104 M⊙10^4 \,M_\odot would bear imprints of the distribution of DM minispikes because these low-mass IMBHs can grow efficiently in the presence of DM minispikes by merging with BHs and NSs. Future space-based GW detectors, like LISA, Taiji, and Tianqin, can measure the IMRI/EMRI rate and hence constrain the distribution of DM around IMBHs.Comment: 17 pages, 10 figure

    Cloud computing resource scheduling and a survey of its evolutionary approaches

    Get PDF
    A disruptive technology fundamentally transforming the way that computing services are delivered, cloud computing offers information and communication technology users a new dimension of convenience of resources, as services via the Internet. Because cloud provides a finite pool of virtualized on-demand resources, optimally scheduling them has become an essential and rewarding topic, where a trend of using Evolutionary Computation (EC) algorithms is emerging rapidly. Through analyzing the cloud computing architecture, this survey first presents taxonomy at two levels of scheduling cloud resources. It then paints a landscape of the scheduling problem and solutions. According to the taxonomy, a comprehensive survey of state-of-the-art approaches is presented systematically. Looking forward, challenges and potential future research directions are investigated and invited, including real-time scheduling, adaptive dynamic scheduling, large-scale scheduling, multiobjective scheduling, and distributed and parallel scheduling. At the dawn of Industry 4.0, cloud computing scheduling for cyber-physical integration with the presence of big data is also discussed. Research in this area is only in its infancy, but with the rapid fusion of information and data technology, more exciting and agenda-setting topics are likely to emerge on the horizon
    • …
    corecore