27,323 research outputs found

    Indirect Detection Signatures for the Origin of Asymmetric Dark Matter

    Get PDF
    We study the decay signatures of Asymmetric Dark Matter (ADM) via higher dimension operators which are responsible for generating the primordial dark matter (DM) asymmetry. Since the signatures are sensitive both to the nature of the higher dimension operator generating the DM asymmetry and to the sign of the baryon or lepton number that the DM carries, indirect detection may provide a window into the nature of the mechanism which generates the DM asymmetry. We consider in particular dimension-6 fermionic operators of the form OADM=XOB−L/M2{\cal O}_{ADM} = X {\cal O}_{B-L}/M^2, where OB−L=ucdcdc, ℓℓec, qℓdc{\cal O}_{B-L} = u^c d^c d^c,~\ell \ell e^c,~q \ell d^c (or operators related through a Hermitian conjugate) with the scale MM around or just below the GUT scale. We derive constraints on ADM particles both in the natural mass range (around a few GeV), as well as in the range between 100 GeV to 10 TeV. For light ADM, we focus on constraints from both the low energy gamma ray data and proton/anti-proton fluxes. For heavy ADM, we consider γ\gamma-rays and proton/anti-proton fluxes, and we fit e+/e−e^+/e^- data from AMS-02 and H.E.S.S. (neglecting the Fermi charged particle fluxes which disagree with AMS-02 below 100 GeV). We show that, although the best fit regions from electron/positron measurement are still in tension with other channels on account of the H.E.S.S. measurement at high energies, compared to an ordinary symmetric dark matter scenario, the decay of DM with a primordial asymmetry reduces the tension. Better measurement of the flux at high energy will be necessary to draw a definite conclusion about the viability of decaying DM as source for the signals.Comment: Constraint from H.E.S.S. for heavy ADM scenario is included. Constraint from anti-proton flux for light ADM scenario is included. Matched to the version of publicatio

    Gauge Theory Model of the Neutrino and New Physics Beyond the Standard Model

    Full text link
    Majorana features of neutrinos and SO(3) gauge symmetry of three families enable us to construct a gauge model of neutrino for understanding naturally the observed smallness of neutrino masses and the nearly tri-bimaximal neutrino mixing when combining together with the mechanism of approximate global U(1) family symmetry. The vacuum structure of SO(3) symmetry breaking is found to play an important role. The mixing angle θ13\theta_{13} and CP-violating phases governed by the vacuum of spontaneous symmetry breaking are in general non-zero and testable experimentally at the allowed sensitivity. The model predicts the existence of vector-like SO(3) triplet charged leptons and vector-like SO(3) triplet Majorana neutrinos as well as SO(3) tri-triplet Higgs bosons, some of them can be light and explored at the colliders LHC and ILC.Comment: 15 pages, only typos in table 1 corrected in this replaced versio

    Sampling Sparse Signals on the Sphere: Algorithms and Applications

    Get PDF
    We propose a sampling scheme that can perfectly reconstruct a collection of spikes on the sphere from samples of their lowpass-filtered observations. Central to our algorithm is a generalization of the annihilating filter method, a tool widely used in array signal processing and finite-rate-of-innovation (FRI) sampling. The proposed algorithm can reconstruct KK spikes from (K+K)2(K+\sqrt{K})^2 spatial samples. This sampling requirement improves over previously known FRI sampling schemes on the sphere by a factor of four for large KK. We showcase the versatility of the proposed algorithm by applying it to three different problems: 1) sampling diffusion processes induced by localized sources on the sphere, 2) shot noise removal, and 3) sound source localization (SSL) by a spherical microphone array. In particular, we show how SSL can be reformulated as a spherical sparse sampling problem.Comment: 14 pages, 8 figures, submitted to IEEE Transactions on Signal Processin
    • …
    corecore