1 research outputs found
Link between global cooling and mammalian transformation across the Eocene-Oligocene boundary in the continental interior of Asia
Evidence in the world's ocean current system indicates an abrupt cooling from 34.1 to 33.6 Ma across the Eocene-Oligocene boundary at 33.9 Ma. The remarkable cooling period in the ocean, called the Eocene-Oligocene transition (EOT), is correlated with pronounced mammalian faunal replacement as shown in terrestrial fossil records. For the first time within Asia, a section is magnetostratigraphically dated that also produces mammalian fossils that span the Late Eocene-Early Oligocene transition. Three fossil assemblages revealed through the EOT (34.8, 33.7, and 30.4 Ma) demonstrate that perissodactyl faunas were abruptly replaced by rodent/lagomorph-dominant faunas during climate cooling, and that changes in mammalian communities were accelerated by aridification in central Asia. Three fossil assemblages (34.8, 33.7, and 30.4 Ma) within the north Junggar Basin (Burqin section) tied to this magnetostratigraphically dated section, reveal that perissodactyl faunas were abruptly replaced by rodent/lagomorph-dominant faunas during climate cooling, and that changes in mammalian communities were accelerated by aridification in central Asia. The biotic reorganization events described in the Burqin section are comparable to the Grande Coupure in Europe and the Mongolian Remodeling of mammalian communities. That is, the faunal transition was nearly simultaneous all over the world and mirrored global climatic changes with regional factors playing only a secondary role.</p