19,064 research outputs found

    Design of Copolymeric Materials

    Full text link
    We devise a method for designing materials that will have some desired structural characteristics. We apply it to multiblock copolymers that have two different types of monomers, A and B. We show how to determine what sequence of A's and B's should be synthesised in order to give a particular structure and morphology. %For example in a melt of such %polymers, one may wish to engineer a body-centered %cubic structure. Using this method in conjunction with the theory of microphase separation developed by Leibler, we show it is possible to efficiently search for a desired morphology. The method is quite general and can be extended to design isolated heteropolymers, such as proteins, with desired structural characteristics. We show that by making certain approximations to the exact algorithm, a method recently proposed by Shakhnovich and Gutin is obtained. The problems with this method are discussed and we propose an improved approximate algorithm that is computationally efficient.Comment: 15 pages latex 2.09 and psfig, 1 postscript figure

    A New Algorithm for Protein Design

    Full text link
    We apply a new approach to the reverse protein folding problem. Our method uses a minimization function in the design process which is different from the energy function used for folding. For a lattice model, we show that this new approach produces sequences that are likely to fold into desired structures. Our method is a significant improvement over previous attempts which used the energy function for designing sequences.Comment: 10 pages latex 2.09 no figures. Use uufiles to decod

    Atmospheric Backscatter Model Development for CO Sub 2 Wavelengths

    Get PDF
    The results of investigations into the problems of modeling atmospheric backscatter from aerosols, in the lowest 20 km of the atmosphere, at CO2 wavelengths are presented, along with a summary of the relevant aerosol characteristics and their variability, and a discussion of the measurement techniques and errors involved. The different methods of calculating the aerosol backscattering function, both from measured aerosol characteristics and from optical measurements made at other wavelengths, are discussed in detail, and limits are placed on the accuracy of these methods. The effects of changing atmospheric humidity and temperature on the backscatter are analyzed and related to the actual atmosphere. Finally, the results of modeling CO2 backscatter in the atmosphere are presented and the variation with height and geographic location discussed, and limits placed on the magnitude of the backscattering function. Conclusions regarding modeling techniques and modeled atmospheric backscatter values are presented in tabular form

    PSR B1828-11: a precession pulsar torqued by a quark planet?

    Get PDF
    The pulsar PSR B1828-11 has long-term, highly periodic and correlated variations in both pulse shape and the rate of slow-down. This phenomenon may provide evidence for precession of the pulsar as suggested previously within the framework of free precession as well as forced one. On a presumption of forced precession, we propose a quark planet model to this precession henomenon instead, in which the pulsar is torqued by a quark planet. We construct this model by constraining mass of the pulsar (MpsrM_{\rm psr}), mass of the planet (MplM_{\rm pl}) and orbital radius of the planet (rplr_{\rm pl}). Five aspects are considered: derived relation between MpsrM_{\rm psr} and rplr_{\rm pl}, movement of the pulsar around the center of mass, ratio of MpsrM_{\rm psr} and MplM_{\rm pl}, gravitational wave radiation timescale of the planetary system, and death-line criterion. We also calculate the range of precession period derivative and gravitational wave strength (at earth) permitted by the model. Under reasonable parameters, the observed phenomenon can be understood by a pulsar (10−4∼10−1M⊙10^{-4}\sim10^{-1}M_{\odot}) with a quark planet (10−8∼10−3M⊙10^{-8}\sim10^{-3}M_{\odot}) orbiting it. According to the calculations presented, the pulsar would be a quark star because of its low mass, which might eject a lump of quark matter (to become a planet around) during its birth.Comment: 6 pages, 3 figures, accepted by MNRAS (Letters

    Efficiency of Fish Propulsion

    Full text link
    It is shown that the system efficiency of a self-propelled flexible body is ill-defined unless one considers the concept of quasi-propulsive efficiency, defined as the ratio of the power needed to tow a body in rigid-straight condition over the power it needs for self-propulsion, both measured for the same speed. Through examples we show that the quasi-propulsive efficiency is the only rational non-dimensional metric of the propulsive fitness of fish and fish-like mechanisms. Using two-dimensional viscous simulations and the concept of quasi-propulsive efficiency, we discuss the efficiency two-dimensional undulating foils. We show that low efficiencies, due to adverse body-propulsor hydrodynamic interactions, cannot be accounted for by the increase in friction drag

    Role of cerium in lithium niobate for holographic recording

    Get PDF
    Cerium-doped lithium niobate crystals are tested for holographic recording. A photochromic effect is observed in crystals doped with cerium and manganese. But two-center recording in the sample is not as effective as in iron and manganese doubly doped crystals. Photocurrent measurements in cerium and iron singly doped crystals indicate that the photovoltaic constant in the cerium-doped crystal is only one third of that of the iron-doped one. This is the main reason accounting for the low sensitivity of cerium-doped lithium niobate crystals. However, in the diffusion dominated case, i.e., for reflection geometry, cerium-doped lithium niobate may give a strong effect
    • …
    corecore