19,064 research outputs found
Design of Copolymeric Materials
We devise a method for designing materials that will have some desired
structural characteristics. We apply it to multiblock copolymers that have two
different types of monomers, A and B. We show how to determine what sequence of
A's and B's should be synthesised in order to give a particular structure and
morphology. %For example in a melt of such %polymers, one may wish to engineer
a body-centered %cubic structure. Using this method in conjunction with the
theory of microphase separation developed by Leibler, we show it is possible to
efficiently search for a desired morphology. The method is quite general and
can be extended to design isolated heteropolymers, such as proteins, with
desired structural characteristics. We show that by making certain
approximations to the exact algorithm, a method recently proposed by
Shakhnovich and Gutin is obtained. The problems with this method are discussed
and we propose an improved approximate algorithm that is computationally
efficient.Comment: 15 pages latex 2.09 and psfig, 1 postscript figure
A New Algorithm for Protein Design
We apply a new approach to the reverse protein folding problem. Our method
uses a minimization function in the design process which is different from the
energy function used for folding. For a lattice model, we show that this new
approach produces sequences that are likely to fold into desired structures.
Our method is a significant improvement over previous attempts which used the
energy function for designing sequences.Comment: 10 pages latex 2.09 no figures. Use uufiles to decod
Atmospheric Backscatter Model Development for CO Sub 2 Wavelengths
The results of investigations into the problems of modeling atmospheric backscatter from aerosols, in the lowest 20 km of the atmosphere, at CO2 wavelengths are presented, along with a summary of the relevant aerosol characteristics and their variability, and a discussion of the measurement techniques and errors involved. The different methods of calculating the aerosol backscattering function, both from measured aerosol characteristics and from optical measurements made at other wavelengths, are discussed in detail, and limits are placed on the accuracy of these methods. The effects of changing atmospheric humidity and temperature on the backscatter are analyzed and related to the actual atmosphere. Finally, the results of modeling CO2 backscatter in the atmosphere are presented and the variation with height and geographic location discussed, and limits placed on the magnitude of the backscattering function. Conclusions regarding modeling techniques and modeled atmospheric backscatter values are presented in tabular form
PSR B1828-11: a precession pulsar torqued by a quark planet?
The pulsar PSR B1828-11 has long-term, highly periodic and correlated
variations in both pulse shape and the rate of slow-down. This phenomenon may
provide evidence for precession of the pulsar as suggested previously within
the framework of free precession as well as forced one. On a presumption of
forced precession, we propose a quark planet model to this precession henomenon
instead, in which the pulsar is torqued by a quark planet. We construct this
model by constraining mass of the pulsar (), mass of the planet
() and orbital radius of the planet (). Five aspects
are considered: derived relation between and ,
movement of the pulsar around the center of mass, ratio of and
, gravitational wave radiation timescale of the planetary system,
and death-line criterion. We also calculate the range of precession period
derivative and gravitational wave strength (at earth) permitted by the model.
Under reasonable parameters, the observed phenomenon can be understood by a
pulsar () with a quark planet
() orbiting it. According to the calculations
presented, the pulsar would be a quark star because of its low mass, which
might eject a lump of quark matter (to become a planet around) during its
birth.Comment: 6 pages, 3 figures, accepted by MNRAS (Letters
Efficiency of Fish Propulsion
It is shown that the system efficiency of a self-propelled flexible body is
ill-defined unless one considers the concept of quasi-propulsive efficiency,
defined as the ratio of the power needed to tow a body in rigid-straight
condition over the power it needs for self-propulsion, both measured for the
same speed. Through examples we show that the quasi-propulsive efficiency is
the only rational non-dimensional metric of the propulsive fitness of fish and
fish-like mechanisms. Using two-dimensional viscous simulations and the concept
of quasi-propulsive efficiency, we discuss the efficiency two-dimensional
undulating foils. We show that low efficiencies, due to adverse body-propulsor
hydrodynamic interactions, cannot be accounted for by the increase in friction
drag
Role of cerium in lithium niobate for holographic recording
Cerium-doped lithium niobate crystals are tested for holographic recording. A photochromic effect is observed in crystals doped with cerium and manganese. But two-center recording in the sample is not as effective as in iron and manganese doubly doped crystals. Photocurrent measurements in cerium and iron singly doped crystals indicate that the photovoltaic constant in the cerium-doped crystal is only one third of that of the iron-doped one. This is the main reason accounting for the low sensitivity of cerium-doped lithium niobate crystals. However, in the diffusion dominated case, i.e., for reflection geometry, cerium-doped lithium niobate may give a strong effect
- …