202 research outputs found

    The complete mitochondrial genome of a basal teleost, the Asian arowana (Scleropages formosus, Osteoglossidae)

    Get PDF
    BACKGROUND: Mitochondrial DNA-derived sequences have become popular markers for evolutionary studies, as their comparison may yield significant insights into the evolution of both the organisms and their genomes. From the more than 24,000 teleost species, only 254 complete mtDNA sequences are available (GenBank status on 06 Sep 2006). In this paper, we report the complete mitochondrial genome sequence of Asian arowana, a basal bonytongue fish species, which belongs to the order of Osteoglossiformes. RESULTS: The complete mitochondrial genomic sequence (mtDNA) of Asian arowana (Scleropages formosus) was determined by using shotgun sequencing method. The length of Asian arowana mtDNA is ca. 16,650 bp (its variation is due to polymorphic repeats in the control region), containing 13 protein-coding genes, 22 tRNA and 2 rRNA genes. Twelve of the thirteen protein coding genes were found to be encoded by the heavy strand in the order typically observed for vertebrate mitochondrial genomes, whereas only nad6 was located on the light strand. An interesting feature of Asian arowana mitogenome is that two different repeat arrays were identified in the control region: a 37 bp tandem repeat at the 5' end and an AT-type dinucleotide microsatellite at the 3' end. Both repeats show polymorphism among the six individuals tested; moreover the former one is present in the mitochondrial genomes of several other teleost groups. The TACAT motif described earlier only from mammals and lungfish was found in the tandem repeat of several osteoglossid and eel species. Phylogenetic analysis of fish species representing Actinopterygii and Sarcopterygii taxa has shown that the Asian arowana is located near the baseline of the teleost tree, confirming its status among the ancestral teleost lineages. CONCLUSION: The mitogenome of Asian arowana is very similar to the typical vertebrate mitochondrial genome in terms of gene arrangements, codon usage and base composition. However its control region contains two different types of repeat units at both ends, an interesting feature that to our knowledge has never been reported before for other vertebrate mitochondrial control regions. Phylogenetic analysis using the complete mtDNA sequence of Asian arowana confirmed that it belongs to an ancestral teleost lineage

    Transcriptome Analysis Identified Genes for Growth and Omega-3/-6 Ratio in Saline Tilapia

    Get PDF
    Growth and omega-3/-6 ratio are important traits in aquaculture. The mechanisms underlying quick growth and high omega-3/-6 ratio in fish are not fully understood. The consumption of the meat of tilapia suffers a bad reputation due to its low omega-3/-6 ratio. To facilitate the improvement of these traits and to understand more about the mechanisms underlying quick growth and high omega-3/-6 ratio, we conducted transcriptome analysis in the muscle and liver of fast- and slow-growing hybrid saline tilapia generated by crossing Mozambique tilapia and red tilapia. A transcriptome with an average length of 963 bp was generated by using 486.65 million clean 100 bp paired-end reads. A total of 42,699 annotated unique sequences with an average length of 3.4 kb were obtained. Differentially expressed genes (DEGs) in the muscle and liver were identified between fast- and slow-growing tilapia. Pathway analysis classified these genes into many pathways. Ten genes, including foxK1, sparc, smad3, usp38, crot, fadps, sqlea, cyp7b1, impa1, and gss, from the DEGs were located within QTL for growth and omega-3, which were previously detected content in tilapia, suggesting that these ten genes could be important candidate genes for growth and omega-3 fatty acid content. Analysis of SNPs in introns 1 and 2 of foxK1 revealed that the SNPs were significantly associated with growth and omega-3/-6 ratio. This study lays the groundwork for further investigation of the molecular mechanisms underlying the phenotypic variation of these two traits and provides SNPs for selecting these traits at fingerling stage

    A genome scan for quantitative trait loci affecting growth-related traits in an F1 family of Asian seabass (Lates calcarifer)

    Get PDF
    BACKGROUND: Body weight and length are economically important traits in foodfish species influenced by quantitative trait loci (QTL) and environmental factors. It is usually difficult to dissect the genetic and environmental effects. Asian seabass (Lates calcarifer) is an important marine foodfish species with a compact genome (~700 Mb). The recent construction of a first generation linkage map of Asian seabass with 240 microsatellites provides a good opportunity to determine the number and position of QTL, and the magnitude of QTL effects with a genome scan. RESULTS: We conducted a genome scan for QTL affecting body weight, standard length and condition factors in an F1 family containing 380 full-sib individuals from a breeding stock by using 97 microsatellites evenly covering 24 chromosomes. Interval mapping and multiple QTL model mapping detected five significant and 27 suggestive QTL on ten linkage groups (LGs). Among the five significant QTL detected, three (qBW2-a, qTL2-a and qSL2-a) controlling body weight, total and standard length respectively, were mapped on the same region near Lca287 on LG2, and explained 28.8, 58.9 and 59.7% of the phenotypic variance. The other two QTL affecting body weight, qBW2-b and qBW3, were located on LG2 and 3, and accounted for 6.4 and 8.8% of the phenotypic variance. Suggestive QTL associated with condition factors are located on six different LGs. CONCLUSION: This study presents the first example of QTL detection for growth-related traits in an F1 family of a marine foodfish species. The results presented here will enable further fine-mapping of these QTL for marker-assisted selection of the Asian seabass, eventually identifying individual genes responsible for growth-related traits

    A simple and efficient method for isolating polymorphic microsatellites from cDNA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microsatellites in cDNA are useful as molecular markers because they represent transcribed genes and can be used as anchor markers for linkage and comparative mapping, as well as for studying genome evolution. Microsatellites in cDNA can be detected in existing ESTs by data mining. However, in most fish species, no ESTs are available or the number of ESTs is limited, although fishes represent half of the vertebrates on the earth. We developed a simple and efficient method for isolation of microsatellites from cDNA in fish.</p> <p>Results</p> <p>The method included normalization of 150 ng cDNA using 0.5 U duplex-specific nuclease (DSN) at 65°C for 30 min, enrichment of microsatellites using biotinylated oligonucleotides and magnetic field, and directional cloning of cDNA into a vector. We tested this method to enrich CA- and GA-microsatellites from cDNA of Asian seabass, and demonstrated that enrichment of microsatellites from normalized cDNA could increased the efficiency of microsatellite isolation over 30 times as compared to direct sequencing of clones from cDNA libraries. One hundred and thirty-nine (36.2%) out of 384 clones from normalized cDNA contained microsatellites. Unique microsatellite sequences accounted for 23.6% (91/384) of sequenced clones. Sixty microsatellites isolated from cDNA were characterized, and 41 were polymorphic. The average allele number of the 41 microsatellites was 4.85 ± 0.54, while the expected heterozygosity was 0.56 ± 0.03. All the isolated microsatellites inherited in a Mendelian pattern.</p> <p>Conclusion</p> <p>Normalization of cDNA substantially increased the efficiency of enrichment of microsatellites from cDNA. The described method for isolation of microsatellites from cDNA has the potential to be applied to a wide range of fish species. The microsatellites isolated from cDNA could be useful for linkage and comparative mapping, as well as for studying genome evolution.</p

    Mapping QTLs for oil traits and eQTLs for oleosin genes in jatropha

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The major fatty acids in seed oil of jatropha, a biofuel crop, are palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1) and linoleic acid (C18:2). High oleic acid and total oil content are desirable for jatropha breeding. Until now, little was known about the genetic bases of these oil traits in jatropha. In this study, quantitative trait locus (QTL) and expression QTL analyses were applied to identify genetic factors that are relevant to seed oil traits in jatropha.</p> <p>Results</p> <p>Composite interval mapping identified 18 QTL underlying the oil traits. A highly significant QTL <it>qC18:1-1 </it>was detected at one end of linkage group (LG) 1 with logarithm of the odd (LOD) 18.4 and percentage of variance explained (PVE) 36.0%. Interestingly, the QTL <it>qC18:1-1 </it>overlapped with <it>qC18:2-1</it>, controlling oleic acid and linoleic acid compositions. Among the significant QTL controlling total oil content, <it>qOilC-4 </it>was mapped on LG4 a relatively high significant level with LOD 5.0 and PVE 11.1%. Meanwhile, oleosins are the major composition in oil body affecting oil traits; we therefore developed SNP markers in three oleosin genes <it>OleI</it>, <it>OleII </it>and <it>OleIII</it>, which were mapped onto the linkage map. <it>OleI </it>and <it>OleIII </it>were mapped on LG5, closing to QTLs controlling oleic acid and stearic acid. We further determined the expressions of <it>OleI</it>, <it>OleII </it>and <it>OleIII </it>in mature seeds from the QTL mapping population, and detected expression QTLs (eQTLs) of the three genes on LGs 5, 6 and 8 respectively. The eQTL of <it>OleIII</it>, <it>qOleIII-5</it>, was detected on LG5 with PVE 11.7% and overlapped with QTLs controlling stearic acid and oleic acid, implying a cis- or trans-element for the <it>OleIII </it>affecting fatty acid compositions.</p> <p>Conclusion</p> <p>We identified 18 QTLs underlying the oil traits and 3 eQTLs of the oleosin acid genes. The QTLs and eQTLs, especially <it>qC18:1-1</it>, <it>qOilC-4 </it>and <it>qOleIII-5 </it>with contribution rates (R<sup>2</sup>) higher than 10%, controlling oleic acid, total oil content and oleosin gene expression respectively, will provide indispensable data for initiating molecular breeding to improve seed oil traits in jatropha, the key crop for biodiesel production.</p
    corecore