17,320 research outputs found
Near range path navigation using LGMD visual neural networks
In this paper, we proposed a method for near range path navigation for a mobile robot by using a pair of biologically
inspired visual neural network â lobula giant movement detector (LGMD). In the proposed binocular style visual system, each LGMD processes images covering a part of the wide field of view and extracts relevant visual cues as its output. The outputs from the two LGMDs are compared and translated into executable motor commands to control the wheels of the robot in real time. Stronger signal from the LGMD in one side pushes the robot away from this side step by step; therefore, the robot can navigate in a visual environment naturally with the proposed vision system. Our experiments showed that this bio-inspired system worked well in different scenarios
Redundant neural vision systems: competing for collision recognition roles
Ability to detect collisions is vital for future robots that interact with humans in complex visual environments. Lobula giant movement detectors (LGMD) and directional selective neurons (DSNs) are two types of identified neurons found in the visual pathways of insects such as locusts. Recent modelling studies showed that the LGMD or grouped DSNs could each be tuned for collision recognition. In both biological and artificial vision systems, however, which one should play the collision recognition role and the way the two types of specialized visual neurons could be functioning together are not clear. In this modeling study, we compared the competence of the LGMD and the DSNs, and also investigate the cooperation of the two neural vision systems for collision recognition via artificial evolution. We implemented three types of collision recognition neural subsystems â the LGMD, the DSNs and a hybrid system which combines the LGMD and the DSNs subsystems together, in each individual agent. A switch gene determines which of the three redundant neural subsystems plays the collision recognition role. We found that, in both robotics and driving environments, the LGMD was able to build up its ability for collision recognition quickly and robustly therefore reducing the chance of other types of neural networks to play the same role. The results suggest that the LGMD neural network could be the ideal model to be realized in hardware for collision recognition
Contact-eutectic-lens fabrication technique
Method enables use of crystal or semiconductor materials with selective spectral-response characteristics (ultraviolet, visible, or infrared wavelengths) in fabrication of contact lenses, reading glasses, and photographic processing equipment
Holographic Dark Energy Characterized by the Total Comoving Horizon and Insights to Cosmological Constant and Coincidence Problem
The observed acceleration of the present universe is shown to be well
explained by the holographic dark energy characterized by the total comoving
horizon of the universe (HDE). It is of interest to notice that the very
large primordial part of the comoving horizon generated by the inflation of
early universe makes the HDE behave like a cosmological constant. As a
consequence, both the fine-tuning problem and the coincidence problem can
reasonably be understood with the inflationary universe and holographical
principle. We present a systematic analysis and obtain a consistent
cosmological constraint on the HDE model based on the recent cosmological
observations. It is found that the HDE model gives the best-fit result
() and the minimal
which is compatible with for the CDM model.Comment: 17 pages, 4 figures, two eqs. (26)(27) added for the consistent
approximate solution of dark energy in early universe, references added,
published version in PR
Technological innovations at the onset of the Mid-Pleistocene Climate Transition in high-latitude East Asia
The interplay between Pleistocene climatic variability and hominin adaptations to diverse terrestrial ecosystems is a key topic in human evolutionary studies. Early and Middle Pleistocene environmental change and its relation to hominin behavioural responses has been a subject of great interest in Africa and Europe, though little information is available for other key regions of the Old World, particularly from Eastern Asia. Here we examine key Early Pleistocene sites of the Nihewan Basin, in high-latitude northern China, dating between âŒ1.4 to 1.0 million years ago (Ma). We compare stone tool assemblages from three Early Pleistocene sites in the Nihewan Basin, including detailed assessment of stone tool refitting sequences at the âŒ1.1 Ma-old site of Cenjiawan. Increased toolmaking skills and technological innovations are evident in the Nihewan Basin at the onset of the Mid-Pleistocene Climate Transition (MPT). Examination of the lithic technology of the Nihewan sites, together with an assessment of other key Palaeolithic sites of China, indicates that toolkits show increasing diversity at the outset of the MPT and in its aftermath. The overall evidence indicates the adaptive flexibility of early hominins to ecosystem changes since the MPT, though regional abandonments are also apparent in high-latitudes, likely owing to cold and oscillating environmental conditions. The view presented here sharply contrasts with traditional arguments that stone tool technologies of China are homogeneous and continuous over the course of the Early Pleistocene.Introduction Results - Stone-tool-knapping skills recorded in the Cenjiawan assemblage - Technological comparisons of the Nihewan Basin assemblages Discussio
Modeling near-field tsunami observations to improve finite-fault slip models for the 11 March 2011 Tohoku earthquake
The massive tsunami generated by the 11 March 2011 Tohoku earthquake (M_w 9.0) was widely recorded by GPS buoys, wave gauges, and ocean bottom pressure sensors around the source. Numerous inversions for finite-fault slip time histories have been performed using seismic and/or geodetic observations, yielding generally consistent patterns of large co-seismic slip offshore near the hypocenter and/or up-dip near the trench, where estimated peak slip is ~60 m. Modeling the tsunami generation and near-field wave processes using two detailed rupture models obtained from either teleseismic P waves or high-rate GPS recordings in Japan allows evaluation of how well the finite-fault models account for the regional tsunami data. By determining sensitivity of the tsunami calculations to rupture model features, we determine model modifications that improve the fit to the diverse tsunami data while retaining the fit to the seismic and geodetic observations
Supersolidity and phase diagram of softcore bosons in a triangular lattice
We study the softcore extended Bose Hubbard model in a two-dimensional
triangular lattice by using the quantum Monte Carlo methods. The ground state
phase diagram of the system exhibits a very fruitful structure. Except the Mott
insulating state, four kinds of solid states with respect to the commensurate
filling factors and are identified. Two of them (CDW II
and CDW III) are newly predicted. In incommensurate fillings, superfluid,
spuersolid as well as phase separation states are detected . As in the case for
the hardcore bosons, a supersolid phase exists in while it is
unstable towards the phase separation in . However, this instability
is refrained in due to the softening of the bosons and then a
supersolid phase survives.Comment: 4 pages, 5 figure
Nanocrystalline iron at high pressure
X-ray diffraction measurements were performed on nanocrystalline iron up to 46 GPa. For nanocrystalline epsilon-Fe, analysis of lattice parameter data provides a bulk modulus, K, of 179±8 GPa and a pressure derivative of the bulk modulus, K[prime], of 3.6±0.7, similar to the large-grained control sample. The extrapolated zero-pressure unit cell volume of nanocrystalline epsilon-Fe is 22.9±0.2 Ă
^3, compared to 22.3±0.2 Ă
^3 for large-grained epsilon-Fe. No significant grain growth was observed to occur under pressure
- âŠ