1,437 research outputs found

    Combining Subgoal Graphs with Reinforcement Learning to Build a Rational Pathfinder

    Full text link
    In this paper, we present a hierarchical path planning framework called SG-RL (subgoal graphs-reinforcement learning), to plan rational paths for agents maneuvering in continuous and uncertain environments. By "rational", we mean (1) efficient path planning to eliminate first-move lags; (2) collision-free and smooth for agents with kinematic constraints satisfied. SG-RL works in a two-level manner. At the first level, SG-RL uses a geometric path-planning method, i.e., Simple Subgoal Graphs (SSG), to efficiently find optimal abstract paths, also called subgoal sequences. At the second level, SG-RL uses an RL method, i.e., Least-Squares Policy Iteration (LSPI), to learn near-optimal motion-planning policies which can generate kinematically feasible and collision-free trajectories between adjacent subgoals. The first advantage of the proposed method is that SSG can solve the limitations of sparse reward and local minima trap for RL agents; thus, LSPI can be used to generate paths in complex environments. The second advantage is that, when the environment changes slightly (i.e., unexpected obstacles appearing), SG-RL does not need to reconstruct subgoal graphs and replan subgoal sequences using SSG, since LSPI can deal with uncertainties by exploiting its generalization ability to handle changes in environments. Simulation experiments in representative scenarios demonstrate that, compared with existing methods, SG-RL can work well on large-scale maps with relatively low action-switching frequencies and shorter path lengths, and SG-RL can deal with small changes in environments. We further demonstrate that the design of reward functions and the types of training environments are important factors for learning feasible policies.Comment: 20 page

    On the Lower Bound of Minimizing Polyak-{\L}ojasiewicz functions

    Full text link
    Polyak-{\L}ojasiewicz (PL) [Polyak, 1963] condition is a weaker condition than the strong convexity but suffices to ensure a global convergence for the Gradient Descent algorithm. In this paper, we study the lower bound of algorithms using first-order oracles to find an approximate optimal solution. We show that any first-order algorithm requires at least Ω(Lμlog1ε){\Omega}\left(\frac{L}{\mu}\log\frac{1}{\varepsilon}\right) gradient costs to find an ε\varepsilon-approximate optimal solution for a general LL-smooth function that has an μ\mu-PL constant. This result demonstrates the optimality of the Gradient Descent algorithm to minimize smooth PL functions in the sense that there exists a ``hard'' PL function such that no first-order algorithm can be faster than Gradient Descent when ignoring a numerical constant. In contrast, it is well-known that the momentum technique, e.g. [Nesterov, 2003, chap. 2] can provably accelerate Gradient Descent to O(Lμ^log1ε){O}\left(\sqrt{\frac{L}{\hat{\mu}}}\log\frac{1}{\varepsilon}\right) gradient costs for functions that are LL-smooth and μ^\hat{\mu}-strongly convex. Therefore, our result distinguishes the hardness of minimizing a smooth PL function and a smooth strongly convex function as the complexity of the former cannot be improved by any polynomial order in general

    Modelling of damping in transient dynamic finite element analysis

    Full text link
    corecore