6 research outputs found

    Excitonic Enhancement and Excited Excitonic States in CsPbBr<sub>3</sub> Halide Perovskite Single Crystals

    No full text
    Halide perovskites are novel photonics materials promising numerous applications in fields such as photovoltaics, LED light sources, microlasers, and radiation detectors. Many halide perovskites are direct-gap semiconductors, and Wannier–Mott excitons play a significant role in their optical properties near the fundamental absorption edge. The high oscillator strength of these states favors applications where efficient interaction with light is required. In this work, to study excitonic states in CsPbBr3 halide perovskite single crystals, the reflection spectroscopy at temperatures from 4 K was used. A reflection coefficient up to 70% was observed for the n=1 exciton state, followed by weak excited states of excitons with n=2 and n=3. It should be noted that the Sommerfeld enhancement factor should be considered for a correct description of the behavior of the dielectric constant, taking into account excitonic effects

    The search for \ub5+ \u2192 e+\u3b3 with 10 1214 sensitivity: The upgrade of the meg experiment

    Get PDF
    The MEG experiment took data at the Paul Scherrer Institute in the years 2009\u20132013 to test the violation of the lepton flavor conservation law, which originates from an accidental symmetry that the Standard Model of elementary particle physics has, and published the most stringent limit on the charged lepton flavor violating decay \ub5+ \u2192 e+\u3b3: BR(\ub5+ \u2192 e+\u3b3) &lt; 4.2 7 10 1213 at 90% confidence level. The MEG detector has been upgraded in order to reach a sensitivity of 6 7 10 1214 . The basic principle of MEG II is to achieve the highest possible sensitivity using the full muon beam intensity at the Paul Scherrer Institute (7 7 107 muons/s) with an upgraded detector. The main improvements are better rate capability of all sub-detectors and improved resolutions while keeping the same detector concept. In this paper, we present the current status of the preparation, integration and commissioning of the MEG II detector in the recent engineering runs
    corecore