2 research outputs found
Optical Absorption and Raman Spectroscopy Study of the Fluorinated Double-Wall Carbon Nanotubes
Double-wall carbon nanotube (DWNT) samples have been fluorinated at room temperature with varied concentration of a fluorinating agent BrF3. Content of the products estimated from X-ray photoelectron data was equal to CF0.20 and CF0.29 in the case of deficit and excess of BrF3. Raman spectroscopy showed considerable decrease of carbon nanotube amount in the fluorinated samples. Analysis of optical absorption spectra measured for pristine and fluorinated DWNT samples revealed a selectivity of carbon nanotube fluorination. Nanotubes with large chiral angle are more inert to the fluorinating agent used
Thermal Behavior of Fluorinated Double-Walled Carbon Nanotubes
Double-walled carbon nanotubes (DWNTs), produced by a catalytic chemical vapor deposition method, have been fluorinated using a volatile mixture of BrF3 and Br2. Optical absorption spectroscopic study on the product detected nonfluorinated nanotubes, which could correspond to the inner walls of DWNTs. The fluorinated DWNTs have been annealed in vacuum at fixed temperatures, and X-ray photoelectron spectroscopy showed almost no fluorine in the sample heated to 300 °C. Comparison between X-ray
fluorescent C KR spectra of the pristine DWNT sample and the annealed fluorinated sample revealed change of the atomic structure of graphitic shells in the process of thermal defluorination