20 research outputs found

    Answer Summarization for Technical Queries: Benchmark and New Approach

    Get PDF
    Prior studies have demonstrated that approaches to generate an answer summary for a given technical query in Software Question and Answer (SQA) sites are desired. We find that existing approaches are assessed solely through user studies. There is a need for a benchmark with ground truth summaries to complement assessment through user studies. Unfortunately, such a benchmark is non-existent for answer summarization for technical queries from SQA sites. To fill the gap, we manually construct a high-quality benchmark to enable automatic evaluation of answer summarization for technical queries for SQA sites. Using the benchmark, we comprehensively evaluate the performance of existing approaches and find that there is still a big room for improvement. Motivated by the results, we propose a new approach TechSumBot with three key modules:1) Usefulness Ranking module, 2) Centrality Estimation module, and 3) Redundancy Removal module. We evaluate TechSumBot in both automatic (i.e., using our benchmark) and manual (i.e., via a user study) manners. The results from both evaluations consistently demonstrate that TechSumBot outperforms the best performing baseline approaches from both SE and NLP domains by a large margin, i.e., 10.83%-14.90%, 32.75%-36.59%, and 12.61%-17.54%, in terms of ROUGE-1, ROUGE-2, and ROUGE-L on automatic evaluation, and 5.79%-9.23% and 17.03%-17.68%, in terms of average usefulness and diversity score on human evaluation. This highlights that the automatic evaluation of our benchmark can uncover findings similar to the ones found through user studies. More importantly, automatic evaluation has a much lower cost, especially when it is used to assess a new approach. Additionally, we also conducted an ablation study, which demonstrates that each module in TechSumBot contributes to boosting the overall performance of TechSumBot.Comment: Accepted by ASE 202

    Transcriptome Analysis on Maternal Separation Rats With Depression-Related Manifestations Ameliorated by Electroacupuncture

    Get PDF
    Maternal separation (MS), a stressful event in early life, has been linked to neuropsychiatric disorders later in life, especially depression. In this study we investigated whether treatment with electroacupuncture (EA) could ameliorate depression-related manifestations in adult animals that had adverse early life experiences. We demonstrated depression-like behavior deficiencies in a sucrose preference test and a forced swimming test in a rat model with neonatal MS. Repeated EA treatment at the acupoints Baihui (GV20) and Yintang (GV29) during adulthood was shown to be remarkably attenuated above behavioral deficits. Using unbiased genome-wide RNA sequencing to investigate alterations in the transcriptome of the prefrontal cortex (PFC), we explored the altered gene sets involved in circadian rhythm and neurotransmitter transporter activity in MS rats, and their expression tended to be reversed after EA treatment. In addition, we analyzed the interaction network of differentiated lncRNA– or circRNA–miRNA–mRNA by using the principle of competitive endogenous RNA (ceRNA). These results suggest that EA at GV20 and GV29 ameliorates depression-related manifestations by regulating the expression of multiple genes

    Hydrological Response to Precipitation and Human Activities—A Case Study in the Zuli River Basin, China

    No full text
    Precipitation and human activities are two essential forcing dynamics that influence hydrological processes. Previous research has paid more attention to either climate and streamflow or vegetation cover and streamflow, but rarely do studies focus on the impact of climate and human activities on streamflow and sediment. To investigate those impacts, the Zuli River Basin (ZRB), a typical tributary basin of the Yellow River in China, was chosen to identify the impact of precipitation and human activities on runoff and sediment discharge. A double mass curve (DMC) analysis and test methods, including accumulated variance analysis, sequential cluster, Lee-Heghnian, and moving t-test methods, were utilized to determine the abrupt change points based on data from 1956 to 2015. Correlation formulas and multiple regression methods were used to calculate the runoff and sediment discharge reduction effects of soil conservation measures and to estimate the contribution rate of precipitation and soil conservation measures to runoff and sediment discharge. Our results show that the runoff reduction effect of soil conservation measures (45%) is greater than the sediment discharge reduction effect (32%). Soil conservation measures were the main factor controlling the 74.5% and 75.0% decrease in runoff and sediment discharge, respectively. Additionally, the contribution rate of vegetation measures was higher than that of engineering measures. This study provides scientific strategies for water resource management and soil conservation planning at catchment scale to face future hydrological variability

    Age of Bilingual Onset Shapes the Dynamics of Functional Connectivity and Laterality in the Resting-State

    No full text
    Bilingualism is known to enhance cognitive function and flexibility of the brain. However, it is not clear how bilingual experience affects the time-varying functional network and whether these changes depend on the age of bilingual onset. This study intended to investigate the bilingual-related dynamic functional connectivity (dFC) based on the resting-state functional magnetic resonance images, including 23 early bilinguals (EBs), 30 late bilinguals (LBs), and 31 English monolinguals. The analysis identified two dFC states, and LBs showed more transitions between these states than monolinguals. Moreover, more frequent left–right switches were found in functional laterality in prefrontal, lateral temporal, lateral occipital, and inferior parietal cortices in EBs compared with LB and monolingual cohorts, and the laterality changes in the anterior superior temporal cortex were negatively correlated with L2 proficiency. These findings highlight how the age of L2 acquisition affects cortico-cortical dFC pattern and provide insight into the neural mechanisms of bilingualism

    Functional molecule-mediated assembled copper nanozymes for diabetic wound healing

    No full text
    Abstract Background The complex hyperglycemic, hypoxic, and reactive oxygen species microenvironment of diabetic wound leads to vascular defects and bacterial growth and current treatment options are relatively limited by their poor efficacy. Results Herein, a functional molecule-mediated copper ions co-assembled strategy was constructed for collaborative treatment of diabetic wounds. Firstly, a functional small molecule 2,5-dimercaptoterephthalic acid (DCA) which has symmetrical carboxyl and sulfhydryl structure, was selected for the first time to assisted co-assembly of copper ions to produce multifunctional nanozymes (Cu-DCA NZs). Secondly, the Cu-DCA NZs have excellent multicatalytic activity, and photothermal response under 808 nm irradiation. In vitro and in vivo experiments showed that it not only could efficiently inhibit bacterial growth though photothermal therapy, but also could catalyze the conversion of intracellular hydrogen peroxide to oxygen which relieves wound hypoxia and improving inflammatory accumulation. More importantly, the slow release of copper ions could accelerate cellular proliferation, migration and angiogenesis, synergistically promote the healing of diabetic wound furtherly. Conclusions The above results indicate that this multifunctional nanozymes Cu-DCA NZs may be a potential nanotherapeutic strategy for diabetic wound healing

    M1 Macrophage-Biomimetic Targeted Nanoparticles Containing Oxygen Self-Supplied Enzyme for Enhancing the Chemotherapy

    No full text
    Tumor hypoxia is considered one of the key causes of the ineffectiveness of various strategies for cancer treatment, and the non-specific effects of chemotherapy drugs on tumor treatment often lead to systemic toxicity. Thus, we designed M1 macrophage-biomimetic-targeted nanoparticles (DOX/CAT@PLGA-M1) which contain oxygen self-supplied enzyme (catalase, CAT) and chemo-therapeutic drug (doxorubicin, DOX). The particle size of DOX/CAT@PLGA-M1 was 202.32 ± 2.27 nm (PDI 3), which further proved the active targeting effect of the M1 macrophage membrane. Above all, a novel multifunctional nano-therapy was developed which improved tumor hypoxia and obtained tumor targeting activity
    corecore