243 research outputs found

    Fibroblast phenotypes in different lung diseases

    Get PDF
    BACKGROUND: The “seed and soil” hypothesis emphasizes the importance of interactions between tumor cells and their microenvironment. CAFs (Cancer associated fibroblasts) are important components of the tumor microenvironment. They were widely involved in cancer cells growth and metastasis. Fibroblasts may also play a role in inflammatory disease. The phenotype conversion of fibroblasts in lung diseases has not been investigated previously. We hypothesized that fibroblasts phenotypes may vary among different types of lung disease. METHODS: The study included six types of lung tissues, ranging from normal lung to lung adenocarcinoma with lymphatic metastasis. Para-carcinoma tissues which were 2-cm-away from the tumor focus were also included in the analysis. The expression of target proteins including alpha-SMA (smooth muscle actin), FAP (fibroblast activation protein), vimentin, E-cadherin, and CK-19 (cytokeratin-19) were examined by immunohistochemistry. TGF-beta(transforming growth factor) and Twist were detected simultaneously in all samples. RESULTS: A progressive increase in the levels of alpha-SMA, vimentin and CK-19 was observed in correlation to the degree of malignancy from normal lung tissue to lung adenocarcinoma with lymphatic metastasis, whereas E-cadherin expression showed the opposite trend. TGF-beta and Twist were detected in cancer tissues and inflammatory pseudotumors. None of the proteins were detected in para-carcinoma tissues. CONCLUSIONS: Fibroblast phenotypes varied according to the type and degree of lung malignancy and fibroblasts phenotypic conversion occurs as a gradual process with specific spatiotemporal characteristics. Similar fibroblast phenotypes in inflammatory diseases and cancer tissues suggested a correlation between inflammation and cancer and implied a common mechanism underlying the formation of fibroblasts in inflammatory diseases and lung cancer. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13019-014-0147-z) contains supplementary material, which is available to authorized users

    Harvest-aid application strategy in different cotton planting densities by unmanned aerial vehicle

    Get PDF
    Harvest aids are widely used for defoliating leaves and accelerating the opening of green bolls to facilitate machine harvesting in cotton (Gossypium hirsutum L.) production areas. Cotton harvest aids applied by ground-based mechanical sprayers are inefficient due to mechanical damage to cotton crops and soil and low flexibility. For the last few years, small plant protection unmanned aerial vehicles (UAVs) have been used for applying pesticides across the world due to their high efficiency, high pesticide utilization, low volume and no harmful damage to crops and soil. This study mainly focuses on developing the technology of harvest aid application by UAVs with respect to the dosage and application frequency. Compared with previous studies, this work performs miscellaneous field trials for two years in three experimental sites located in high-density planting areas and two sites in sparse-density planting areas, wherein both cotton cultivation modes and weather conditions are different. In the study, single-round, dual-round and reduced dosage applications are tested, where the defoliation rate, boll opening rate, fiber quality and lint cotton yield are assessed based on the collected data. It is concluded from the experimental results that the achieved defoliation rate and boll opening rate of treatments with a single-round application using the recommended dosage fail to meet the harvest requirements in the case of high planting density (180,000-195,000 plants/hm2). However, with the dual-round application of the exact recommended dosage or 20% lower than the recommended dosage, the achieved defoliation rate, and boll opening rate meet the machine harvest requirements. In sparse-density planting areas (≤90,000 plants/ha), the results of treatment with the recommended dosage and single-round application by UAV spraying meet the requirements. In all the experimental sites, the harvest-aid dosage and application frequency do not affect fiber quality and lint cotton yield. In summary, considering the cost and environmental protection, harvest aid application by UAVs with a dual-round application at 80% of the recommended dosage at a 7-day interval is encouraged in high-density planting areas, while in sparse-density planting areas, single-round application of harvest aids at the recommended dosage by UAVs is encouraged. The results provide paramount guidance for cotton farmers and scholars in this field. Possible future studies are also discussed in this paper

    Optogenetic Control of Voltage-Gated Calcium Channels

    Get PDF
    Voltage-gated Ca(2+) (CaV ) channels mediate Ca(2+) entry into excitable cells to regulate a myriad of cellular events following membrane depolarization. We report the engineering of RGK GTPases, a class of genetically encoded CaV channel modulators, to enable photo-tunable modulation of CaV channel activity in excitable mammalian cells. This optogenetic tool (designated optoRGK) tailored for CaV channels could find broad applications in interrogating a wide range of CaV -mediated physiological processes

    Effects of sea ice melt water input on phytoplankton biomass and community structure in the eastern Amundsen Sea

    Get PDF
    Sea ice melt water and circumpolar deep water (CDW) intrusion have important impacts on the ecosystem of the Amundsen Sea. In this study, samples of nutrients and phytoplankton pigments from nine stations in the eastern Amundsen Sea were collected during the austral summer. Based on in-situ hydrological observations, sea ice density data from satellite remote sensing, and chemical taxonomy calculations, the relationships between environmental factors and phytoplankton biomass and community structure were studied. The results showed that with increasing latitude, the contribution of sea ice melt water (MW%) and the stability of the water body increased, and the depth of the mixed layer (MLD) decreased. The integrated concentration of chlorophyll a (Chl-a) ranged from 21.4 mg·m−2 to 148.4 mg·m−2 (the average value was 35.7±53.4 mg·m−2). Diatoms (diatoms-A [Fragilariopsis spp., Chaetoceros spp., and Proboscia spp.] and diatoms-B [Pseudonitzschia spp.]) and Phaeocystis antarctica were the two most widely distributed phytoplankton groups and contributed 32%±16% and 28%±11%, respectively, of the total biomass. The contributions of Dinoflagellates, Chlorophytes, Cryptophytes, the high-iron group of P. antarctica, and Diatom group A were approximately 17%±8%, 15%±13%, 9%±6%, 5%±9%, and 3%±7%, respectively. The area with the highest phytoplankton biomass was located near the ice-edge region, with a short time lag (Tlag) between sampling and complete sea ice melt and a high MW%, while the area with the second-highest Chl-a concentration was located in the area affected by the upwelling of CDW, with thorough water mixing. Vertically, in the area with a short Tlag and a shallow MLD, the phytoplankton biomass and proportion of diatoms decreased rapidly with increasing water depth. In contrast, in the region with a long Tlag and limited CDW upwelling, the phytoplankton community was dominated by a relatively constant and high proportion of micro phytoplankton, and the phytoplankton biomass was low and relatively stable vertically. Generally, the phytoplankton community structure and biomass in the study area showed high spatial variation and were sensitive to environmental changes

    Optogenetic Control of Non-Apoptotic Cell Death

    Get PDF
    Herein, a set of optogenetic tools (designated LiPOP) that enable photoswitchable necroptosis and pyroptosis in live cells with varying kinetics, is introduced. The LiPOP tools allow reconstruction of the key molecular steps involved in these two non-apoptotic cell death pathways by harnessing the power of light. Further, the use of LiPOPs coupled with upconversion nanoparticles or bioluminescence is demonstrated to achieve wireless optogenetic or chemo-optogenetic killing of cancer cells in multiple mouse tumor models. LiPOPs can trigger necroptotic and pyroptotic cell death in cultured prokaryotic or eukaryotic cells and in living animals, and set the stage for studying the role of non-apoptotic cell death pathways during microbial infection and anti-tumor immunity

    Near-infrared photoactivatable control of Ca signaling and optogenetic immunomodulation

    Get PDF
    The application of current channelrhodopsin-based optogenetic tools is limited by the lack of strict ion selectivity and the inability to extend the spectra sensitivity into the near-infrared (NIR) tissue transmissible range. Here we present an NIR-stimulable optogenetic platform (termed Opto-CRAC ) that selectively and remotely controls Ca2+ oscillations and Ca2+-responsive gene expression to regulate the function of non-excitable cells, including T lymphocytes, macrophages and dendritic cells. When coupled to upconversion nanoparticles, the optogenetic operation window is shifted from the visible range to NIR wavelengths to enable wireless photoactivation of Ca2+-dependent signaling and optogenetic modulation of immunoinflammatory responses. In a mouse model of melanoma by using ovalbumin as surrogate tumor antigen, Opto-CRAC has been shown to act as a genetically-encoded photoactivatable adjuvant to improve antigen-specific immune responses to specifically destruct tumor cells. Our study represents a solid step forward towards the goal of achieving remote control of Ca2+-modulated activities with tailored function

    Direct observation of chaotic resonances in optical microcavities

    Full text link
    Optical microcavities play a significant role in the study of classical and quantum chaos. To date, most experimental explorations of their internal wave dynamics have focused on the properties of their inputs and outputs, without directly interrogating the dynamics and the associated mode patterns inside. As a result, this key information is rarely retrieved with certainty, which significantly restricts the verification and understanding of the actual chaotic motion. Here we demonstrate a simple and robust approach to directly and rapidly map the internal mode patterns in chaotic microcavities. By introducing a local index perturbation through a pump laser, we report a spectral response of optical microcavities that is proportional to the internal field distribution. With this technique, chaotic modes with staggered mode spacings can be distinguished. Consequently, a complete chaos assisted tunneling (CAT) and its time-reversed process are experimentally verified in the optical domain with unprecedented certainty

    Distribution of transparent exopolymer particles and their response to phytoplankton community structure changes in the Amundsen Sea, Antarctica

    Get PDF
    To understand the response of transparent exopolymer particles (TEP) to the changes in phytoplankton communities caused by melting sea ice, we collected samples from the polynya and open ocean affected by the Antarctic circumpolar current in the Amundsen Sea. TEP, pigments, and other environmental factors were analyzed. The results showed that high TEP content was mainly found in the polynya, and was higher in the surface layer than in the deep layer. The main factor that affected TEP distribution was the phytoplankton community. In the polynya area, the phytoplankton were dominated by low-iron Haptophyta. In the Antarctic circumpolar current region affected by ice-melting water, the dominant species was diatom type II. Our results revealed that low-iron Haptophyta may be the main contributors to TEP content

    Genome-wide CRISPR/Cas9 screening for drug resistance in tumors

    Get PDF
    Genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated nuclease 9 (Cas9) screening is a simple screening method for locating loci under specific conditions, and it has been utilized in tumor drug resistance research for finding potential drug resistance-associated genes. This screening strategy has significant implications for further treatment of malignancies with acquired drug resistance. In recent years, studies involving genome-wide CRISPR/Cas9 screening have gradually increased. Here we review the recent application of genome-wide CRISPR/Cas9 screening for drug resistance, involving mitogen-activated protein kinase (MAPK) pathway inhibitors, poly (ADP-ribose) polymerase inhibitors (PARPi), alkylating agents, mitotic inhibitors, antimetabolites, immune checkpoint inhibitors (ICIs), and cyclin-dependent kinase inhibitors (CDKI). We summarize drug resistance pathways such as the KEAP1/Nrf2 pathway MAPK pathway, and NF-κB pathway. Also, we analyze the limitations and conditions for the application of genome-wide CRISPR/Cas9 screening techniques

    Study on the quantitative assessment of Staphylococcus aureus in the broiler chicken slaughtering line

    Get PDF
    Objective To analyze the risk and key prevention and control points of Staphylococcus aureus in a large broiler slaughterhouse and to provide guidance for the scientific prevention and control of Staphylococcus aureus contamination in broiler slaughter. Methods Combining the monitoring data and investigation data of Staphylococcus aureus contamination in a large broiler chicken slaughterhouse, a quantitative assessment model was constructed using @ RISK 7 software, and a quantitative assessment was conducted on the four stages of chicken slaughter (depilation, cleaning chamber, pre-cooling and segmentation). Results Our research determined the predictive growth and decline pattern of Staphylococcus aureus in slaughtering process. It showed that the pre-cooling and segmentation and transmission links were the main risk contributor links of Staphylococcus aureus contamination. The critical risk control points of Staphylococcus aureus in broiler slaughtering were the concentration of Staphylococcus aureus in precooled pool water and hand-borne Staphylococcus aureus in workers with the correlation coefficient of 0.62 and 0.50, respectively. Conclusion The identification of key control points and precise control measures of Staphylococcus aureus in broiler slaughtering can effectively guarantee the health and safety of terminal chicken products
    corecore