1,598 research outputs found

    Injection and detection of spin in a semiconductor by tunneling via interface states

    Full text link
    Injection and detection of spin accumulation in a semiconductor having localized states at the interface is evaluated. Spin transport from a ferromagnetic contact by sequential, two-step tunneling via interface states is treated not in itself, but in parallel with direct tunneling. The spin accumulation induced in the semiconductor channel is not suppressed, as previously argued, but genuinely enhanced by the additional spin current via interface states. Spin detection with a ferromagnetic contact yields a weighted average of the spin accumulation in the channel and in the localized states. In the regime where the spin accumulation in the localized states is much larger than that in the channel, the detected spin signal is insensitive to the spin accumulation in the localized states and the ferromagnet probes the spin accumulation in the semiconductor channel.Comment: 7 pages, 2 figures. Theory onl

    Thermal spin current and magnetothermopower by Seebeck spin tunneling

    Full text link
    The recently observed Seebeck spin tunneling, the thermoelectric analog of spin-polarized tunneling, is described. The fundamental origin is the spin dependence of the Seebeck coefficient of a tunnel junction with at least one ferromagnetic electrode. Seebeck spin tunneling creates a thermal flow of spin-angular momentum across a tunnel barrier without a charge tunnel current. In ferromagnet/insulator/semiconductor tunnel junctions this can be used to induce a spin accumulation (\Delta \mu) in the semiconductor in response to a temperature difference (\Delta T) between the electrodes. A phenomenological framework is presented to describe the thermal spin transport in terms of parameters that can be obtained from experiment or theory. Key ingredients are a spin-polarized thermoelectric tunnel conductance and a tunnel spin polarization with non-zero energy derivative, resulting in different Seebeck tunnel coefficients for majority and minority spin electrons. We evaluate the thermal spin current, the induced spin accumulation and \Delta\mu/\Delta T, discuss limiting regimes, and compare thermal and electrical flow of spin across a tunnel barrier. A salient feature is that the thermally-induced spin accumulation is maximal for smaller tunnel resistance, in contrast to the electrically-induced spin accumulation that suffers from the impedance mismatch between a ferromagnetic metal and a semiconductor. The thermally-induced spin accumulation produces an additional thermovoltage proportional to \Delta\mu, which can significantly enhance the conventional charge thermopower. Owing to the Hanle effect, the thermopower can also be manipulated with a magnetic field, producing a Hanle magnetothermopower.Comment: 10 pages, 3 figures, 1 tabl

    Interference of an Array of Independent Bose-Einstein Condensates

    Full text link
    Interference of an array of independent Bose-Einstein condensates, whose experiment has been performed recently, is theoretically studied in detail. Even if the number of the atoms in each gas is kept finite and the phases of the gases are not well defined, interference fringes are observed on each snapshot. The statistics of the snapshot interference patterns, i.e., the average fringe amplitudes and their fluctuations (covariance), are computed analytically, and concise formulas for their asymptotic values for long time of flight are derived. Processes contributing to these quantities are clarified and the relationship with the description on the basis of the symmetry-breaking scenario is revealed.Comment: 13 pages, 3 figure

    High temperature spin selectivity in a quantum dot qubit using reservoir spin accumulation

    Full text link
    Employing spins in quantum dots for fault-tolerant quantum computing in large-scale qubit arrays with on-chip control electronics requires high-fidelity qubit operation at elevated temperature. This poses a challenge for single spin initialization and readout. Existing schemes rely on Zeeman splitting or Pauli spin blockade with typical energy scales of 0.1 or 1 meV for electron-based qubits, so that sufficient fidelity is obtained only at temperatures around or below 0.1 or 1 K, respectively. Here we describe a method to achieve high temperature spin selectivity in a quantum dot using a reservoir with a spin accumulation, which deterministically sets the spin of a single electron on the dot. Since spin accumulation as large as 10 meV is achievable in silicon, spin selection with electrically adjustable error rates below 10−410^{-4} is possible even in a liquid He bath at 4 K. Via the reservoir spin accumulation, induced and controlled by a nearby ferromagnet, classical information (magnetization direction) is mapped onto a spin qubit. These features provide the prospect of spin qubit operation at elevated temperatures and connect the worlds of quantum computing and spintronics.Comment: Supplementary material available via the journal referenc

    Lateral Effects in Fermion Antibunching

    Full text link
    Lateral effects are analyzed in the antibunching of a beam of free non-interacting fermions. The emission of particles from a source is dynamically described in a 3D full quantum field-theoretical framework. The size of the source and the detectors, as well as the temperature of the source are taken into account and the behavior of the visibility is scrutinized as a function of these parameters.Comment: 22 pages, 4 figure

    Entanglement Generation by Qubit Scattering in Three Dimensions

    Full text link
    A qubit (a spin-1/2 particle) prepared in the up state is scattered by local spin-flipping potentials produced by the two target qubits (two fixed spins), both prepared in the down state, to generate an entangled state in the latter when the former is found in the down state after scattering. The scattering process is analyzed in three dimensions, both to lowest order and in full order in perturbation, with an appropriate renormalization for the latter. The entanglement is evaluated in terms of the concurrence as a function of the incident and scattering angles, the size of the incident wave packet, and the detector resolution, to clarify the key elements for obtaining an entanglement with high quality. The characteristics of the results are also discussed in the context of (in)distinguishability of alternative paths for a quantum particle.Comment: 21 pages, 19 figures, the final versio

    Bias and angular dependence of spin-transfer torque in magnetic tunnel junctions

    Full text link
    We use spin-transfer-driven ferromagnetic resonance (ST-FMR) to measure the spin-transfer torque vector T in MgO-based magnetic tunnel junctions as a function of the offset angle between the magnetic moments of the electrodes and as a function of bias, V. We explain the conflicting conclusions of two previous experiments by accounting for additional terms that contribute to the ST-FMR signal at large |V|. Including the additional terms gives us improved precision in the determination of T(V), allowing us to distinguish among competing predictions. We determine that the in-plane component of has a weak but non-zero dependence on bias, varying by 30-35% over the bias range where the measurements are accurate, and that the perpendicular component can be large enough to be technologically significant. We also make comparisons to other experimental techniques that have been used to try to measure T(V).Comment: 30 pages, 8 figures. Expanded with additional data and discussion. In press at PR
    • …
    corecore