102 research outputs found
Effects of Litchi chinensis fruit isolates on prostaglandin E2 and nitric oxide production in J774 murine macrophage cells
<p>Abstract</p> <p>Background</p> <p><it>Litchi chinensis </it>is regarded as one of the 'heating' fruits in China, which causes serious inflammation symptoms to people.</p> <p>Methods</p> <p>In the current study, the effects of isolates of litchi on prostaglandin E<sub>2 </sub>(PGE<sub>2</sub>) and nitric oxide (NO) production in J774 murine macrophage cells were investigated.</p> <p>Results</p> <p>The AcOEt extract (EAE) of litchi was found effective on stimulating PGE<sub>2 </sub>production, and three compounds, benzyl alcohol, hydrobenzoin and 5-hydroxymethyl-2-furfurolaldehyde (5-HMF), were isolated and identified from the EAE. Benzyl alcohol caused markedly increase in PGE<sub>2 </sub>and NO production, compared with lipopolysaccharide (LPS) as positive control, and in a dose-dependent manner. Hydrobenzoin and 5-HMF were found in litchi for the first time, and both of them stimulated PGE<sub>2 </sub>and NO production moderately in a dose-dependent manner. Besides, regulation of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) mRNA expression and NF-ÎşB (p50) activation might be involved in mechanism of the stimulative process.</p> <p>Conclusion</p> <p>The study showed, some short molecular compounds in litchi play inflammatory effects on human.</p
A Tri-Modality Image Fusion Method for Target Delineation of Brain Tumors in Radiotherapy
Purpose
To develop a tri-modality image fusion method for better target delineation in image-guided radiotherapy for patients with brain tumors.
Methods
A new method of tri-modality image fusion was developed, which can fuse and display all image sets in one panel and one operation. And a feasibility study in gross tumor volume (GTV) delineation using data from three patients with brain tumors was conducted, which included images of simulation CT, MRI, and 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) examinations before radiotherapy. Tri-modality image fusion was implemented after image registrations of CT+PET and CT+MRI, and the transparency weight of each modality could be adjusted and set by users. Three radiation oncologists delineated GTVs for all patients using dual-modality (MRI/CT) and tri-modality (MRI/CT/PET) image fusion respectively. Inter-observer variation was assessed by the coefficient of variation (COV), the average distance between surface and centroid (ADSC), and the local standard deviation (SDlocal). Analysis of COV was also performed to evaluate intra-observer volume variation.
Results
The inter-observer variation analysis showed that, the mean COV was 0.14(±0.09) and 0.07(±0.01) for dual-modality and tri-modality respectively; the standard deviation of ADSC was significantly reduced (p<0.05) with tri-modality; SDlocal averaged over median GTV surface was reduced in patient 2 (from 0.57 cm to 0.39 cm) and patient 3 (from 0.42 cm to 0.36 cm) with the new method. The intra-observer volume variation was also significantly reduced (p = 0.00) with the tri-modality method as compared with using the dual-modality method.
Conclusion
With the new tri-modality image fusion method smaller inter- and intra-observer variation in GTV definition for the brain tumors can be achieved, which improves the consistency and accuracy for target delineation in individualized radiotherapy
Ductile fracture and microstructure of a bearing steel in hot tension
382-388Ductile fracture, such as micro-cavities and micro-voids, inevitably exist and evolve under tensile stress state in metal forming. Ductile fracture sways the mechanical performance of 52100 bearing steel. It is necessary to investigate the influences of strain rate and deformation temperature on both ductile fracture and microstructure evolution. Uniaxial
hot tension tests were performed, in which specimens were stretched to failure in the temperatures range from 950 °C to 1160 °C and in the strain rates range from 0.01 /s to 1.0 /s. Specimens metallographies have been explored after hot tension. Experimental results show that the peak stress decreases when deformation temperature increases and strain rate decreases. The critical strain of stress–strain relationships increases when strain rate increases. Fracture morphology is severe at higher deformation temperatures and lower strain rates. Hot tension deformation capacity is worst at 1160 °C and a strain rate of 0.01 /s, has been caused by a larger and coarser grain structure
Ductile fracture and microstructure of a bearing steel in hot tension
Ductile fracture, such as micro-cavities and micro-voids, inevitably exist and evolve under tensile stress state in metal forming. Ductile fracture sways the mechanical performance of 52100 bearing steel. It is necessary to investigate the influences of strain rate and deformation temperature on both ductile fracture and microstructure evolution. Uniaxial hot tension tests were performed, in which specimens were stretched to failure in the temperatures range from 950 C to 1160 C and in the strain rates range from 0.01 /s to 1.0 /s. Specimens metallographies have been explored after hot tension. Experimental results show that the peak stress decreases when deformation temperature increases and strain rate decreases. The critical strain of stress–strain relationships increases when strain rate increases. Fracture morphology is severe at higher deformation temperatures and lower strain rates. Hot tension deformation capacity is worst at 1160 C and a strain rate of 0.01 /s, has been caused by a larger and coarser grain structure
- …