54 research outputs found

    Compressive Mechanical Properties and Micromechanical Characteristics of Warm and Ice-Rich Frozen Silt

    Get PDF
    It is recognized experimentally that the compressibility of warm and ice-rich frozen soil is remarkable under loading, which will cause a significant deformation and affect the stability of infrastructure constructed in cold region. In this paper, the real-time computerized tomography tests of warm and ice-rich frozen silt were carried out. The microstructure characteristics in the process of loading were studied, and the macromechanical behaviors were obtained at the same time. The test results showed that the stress-strain curve of warm and ice-rich frozen silt is sensitive to temperature; the peak stress was greatly enhanced with the decrease of temperature, and the section area increases with the increase of axial strain; the water content mainly decreases with the increase of axial strain at −1°C; the change of water content is not obvious at −2°C in the loading process. The density damage changes little at first and then increases with the further increase of axial strain

    A strength criterion for frozen sodium sulfate saline soil

    No full text
    Salt content is proven to be an important influencing factor on the mechanical property of frozen saline soils, whose strength criterion is different from that of unfrozen saline soils or frozen soils without salts. In this paper, a series of conventional triaxial tests are carried out for frozen saline soils with sodium sulphate at the temperature of -6°C. A strength criterion of the frozen saline soils, including the influence of salt content, is established by using the generalized nonlinear strength theory. Based on the conventional triaxial test results, a modified hydrostatic pressure expression is proposed according to the critical strength function of Modified Cam Clay model in meridian plane. The influence of salt content on the shear strength of the frozen saline soils is investigated according to their freezing temperature curves, and also the formation of salt and ice crystals. The relationship between salt content and friction angle is analyzed. The proposed strength criterion of frozen saline soil is proved to be reliable by extrusion elongation triaxial tests. The proposed strength criterion can reasonably reflect the major nonlinear strength characteristics of the frozen saline soils, including the influences of salt content changing, pressure melting and ice crushing.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Frost heave and thaw consolidation modelling. Part 1: A water flux function for frost heaving

    No full text
    Although much effort has been made to develop various frost heave models in the past decades, a simple yet versatile model is still needed for engineering applications. This paper presents a method to estimate frost heave in frozen soil using a macroscopic water flux function that extends the segregation potential to make it applicable for both steady state and transient freezing and thawing states. The formation of an individual ice lens is modelled by combining previously developed stress and strain criteria. The water flux function, which includes various factors in accordance with the porosity rate function, can describe the growth of both new and old ice lenses. More importantly, every component of the water flux function is physically explained by the theory of pre-melting dynamics, where all the influencing factors are traced back to their impacts on the ice volume distribution. The performance of the model is demonstrated via simulations of one-dimensional freezing and thawing processes after the model is validated by a specific case from previous literature. Although adequate data are not available for a stricter experimental verification of the model, it is observed that the simulations predict the general course of events together with significant specific features that were identified in previous experimental studies.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Quantification of Water Content during Freeze–Thaw Cycles: A Nuclear Magnetic Resonance Based Method

    No full text
    In analyzing the phase transition and water migration processes in multiphase porous systems, it is helpful to properly evaluate the unfrozen capillary water content and adsorptive water content, respectively. In this study, an innovative procedure was developed to determine the total, adsorptive, and capillary water contents in frozen soils based on the nuclear magnetic resonance (NMR) technique. We found a threshold value of the proton spin–spin relaxation time, , that separates the unfrozen pore water into two distinct regimes: the adsorptive regime for small values and the capillary regime for large values. We showed that the relationship between adsorptive (or capillary) water content and temperature is hysteretic for all three tested soils experiencing a freeze–thaw cycle. The hysteresis behavior of capillary or adsorptive water content during a freeze–thaw cycle is attributable to capillary effect, metastable nucleation, pore blocking, and variation of microstructure. In all the tested soils, the adsorptive water content was significantly larger than the capillary water content and was supported by the experimental evidence inferred from previous pore water potential measurements of various soils

    Frost heave and thaw consolidation modelling. Part 2: One-dimensional thermohydromechanical (THM) framework

    No full text
    This paper presents a thermohydromechanical framework to model frost heave and (thaw) consolidation simultaneously, in which effective and total stresses are taken as the stress variables for unfrozen and frozen soils, respectively. “Effective (total) stresses – void ratio – permeability” relations are proposed to interpret the frost heave behavior of soil in different cooling modes, (thaw) consolidation processes, and changes in key parameters induced by freeze–thaw cycles. The water flux function proposed by Yu et al. in a companion paper is used to calculate frost heave in the frozen zone and to determine the moving boundary of the unfrozen zone during thaw consolidation. Compared with conventional methods, two other modifications are made to characterize the effect of residual stress and the influence of freeze–thaw cycling on permeability in the thaw consolidation analysis. After the governing equations developed in Lagrangian coordinates are implemented in a finite-element system, the framework is firstly verified by a comparison with both small- and large-strain thaw consolidation theories, in terms of simulating a semi-infinite thaw consolidation case, and is then examined with a focus on the three modifications one-by-one. Following that, the framework is assessed by two numerical examples that reasonably reproduce the freeze–thaw cycling processes in both seasonal frost and permafrost regions.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    A Nonlinear Strength Criterion for Frozen Sulfate Saline Silty Clay with Different Salt Contents

    No full text
    It has been proven that the mechanical properties of frozen saline soils are different from frozen soils and unfrozen saline soils. In this paper, in order to study the effects of the salt contents on the strength characteristics of frozen soils, a series of conventional triaxial compression tests are carried out for frozen saline silty clay with Na2SO4 contents 0.0, 0.5, 1.5, and 2.5% under confining pressures from 0 MPa to 18 MPa at −6°C, respectively. The experimental results show that the strength of frozen saline silty clay presents obvious nonlinearity, the strength of frozen saline silty clay increases with increasing confining pressures at first, but with a further increase in confining pressures, the strength decreases because of pressure melting and crushing phenomena under high confining pressures, and salt contents have an important influence on strength of frozen saline silty clay. A strength criterion is proposed on the basis of the experimental results. The strength criterion could well reflect the nonlinear strength characteristic of frozen saline silty clay and the influence of salt contents on frozen saline silty clay

    A climatic variation observed in permafrost temperature at Kangiqsualujjuaq in northern Quebec

    Get PDF
    Permafrost temperatures from the surface down to about 9 m from 3 boreholes distributed around Kangiqsualujjuaq village on the coast of Hudson Strait were recorded and analyzed for the period 1989-1998. The results indicate that the permafrost is getting warm along the southern shore of Hudson Strait from 1993 to 1998 though it become cooling for the past 40 a or more. The observed trend in the order of 0.098°C a at the 9 m depth is consistent with the long-term regional warming observed in air temperatures. It also coincides with that all the global circulation models predict an enhanced warming polar regions associated with the increase in concentration of greenhouse gases in the atmosphere
    • 

    corecore