28 research outputs found

    OccWorld: Learning a 3D Occupancy World Model for Autonomous Driving

    Full text link
    Understanding how the 3D scene evolves is vital for making decisions in autonomous driving. Most existing methods achieve this by predicting the movements of object boxes, which cannot capture more fine-grained scene information. In this paper, we explore a new framework of learning a world model, OccWorld, in the 3D Occupancy space to simultaneously predict the movement of the ego car and the evolution of the surrounding scenes. We propose to learn a world model based on 3D occupancy rather than 3D bounding boxes and segmentation maps for three reasons: 1) expressiveness. 3D occupancy can describe the more fine-grained 3D structure of the scene; 2) efficiency. 3D occupancy is more economical to obtain (e.g., from sparse LiDAR points). 3) versatility. 3D occupancy can adapt to both vision and LiDAR. To facilitate the modeling of the world evolution, we learn a reconstruction-based scene tokenizer on the 3D occupancy to obtain discrete scene tokens to describe the surrounding scenes. We then adopt a GPT-like spatial-temporal generative transformer to generate subsequent scene and ego tokens to decode the future occupancy and ego trajectory. Extensive experiments on the widely used nuScenes benchmark demonstrate the ability of OccWorld to effectively model the evolution of the driving scenes. OccWorld also produces competitive planning results without using instance and map supervision. Code: https://github.com/wzzheng/OccWorld.Comment: Code is available at: https://github.com/wzzheng/OccWorl

    Overexpression of BMI-1 Promotes Cell Growth and Resistance to Cisplatin Treatment in Osteosarcoma

    Get PDF
    Background: BMI-1 is a member of the polycomb group of genes (PcGs), and it has been implicated in the development and progression of several malignancies, but its role in osteosarcoma remains to be elucidated. Methodology/Principal Findings: In the present study, we found that BMI-1 was overexpressed in different types of osteosarcomas. Downregulation of BMI-1 by lentivirus mediated RNA interference (RNAi) significantly impaired cell viability and colony formation in vitro and tumorigenesis in vivo of osteosarcoma cells. BMI-1 knockdown sensitized cells to cisplatininduced apoptosis through inhibition of PI3K/AKT pathway. Moreover, BMI-1-depletion-induced phenotype could be rescued by forced expression of BMI-1 wobble mutant which is resistant to inhibition by the small interfering RNA (siRNA). Conclusions/Significance: These findings suggest a crucial role for BMI-1 in osteosarcoma pathogenesis

    Performance Evaluation of Mesophilic Anaerobic Digestion of Chicken Manure with Algal Digestate

    Get PDF
    Dilution is considered to be a fast and easily applicable pretreatment for anaerobic digestion (AD) of chicken manure (CM), however, dilution with fresh water is uneconomical because of the water consumption. The present investigation was targeted at evaluating the feasibility and process performance of AD of CM diluted with algal digestate water (AW) for methane production to replace tap water (TW). Moreover, the kinetics parameters and mass flow of the AD process were also comparatively analyzed. The highest methane production of diluted CM (104.39 mL/g volatile solid (VS)) was achieved with AW under a substrate concentration of 8% total solid (TS). The result was markedly higher in comparison with the group with TW (79.54-93.82 mL/gVS). Apart from the methane production, considering its energy and resource saving, nearly 20% of TW replaced by AW, it was promising substitution to use AW for TW to dilute CM. However, the process was susceptible to substrate concentration, inoculum, as well as total ammonia and free ammonia concentration

    Association between prophylactic hydration volume and risk of contrast-induced nephropathy after emergent percutaneous coronary intervention

    Get PDF
    Background: Intravenous hydration during percutaneous coronary intervention (PCI) significantly reduces the risk of contrast-induced nephropathy (CIN), but there are no well-defined protocols regard¬ing the optimal hydration volume (HV) required to prevent CIN following emergent PCI. Therefore, this study investigates the association between the intravenous HV and CIN after emergent PCI. Methods: 711 patients were prospectively recruited who had underwent emergent PCI with hydration at routine speed and the relationship was investigated between HV or HV to weight ratio (HV/W) and the CIN risk, which was defined as a ≥ 25% or ≥ 0.5 mg/dL increase in serum creatinine levels from baseline within 48–72 h of exposure to the contrast. Results: The overall CIN incidence was 24.7%. Patients in the higher HV quartiles had elevated CIN rates. Multivariate analysis showed that higher HV/W ratios were not associated with a decreased risk (using the HV) of CIN, but they were associated with an increased risk (using the HV/W) of CIN (Q4 vs. Q1: adjusted odds ratio 1.99; 95% confidence interval 1.05–3.74; p = 0.034). A higher HV/W ratio was not significantly associated with a reduced risk of long-term death (all p > 0.05). Conclusions: The data suggests that a higher total HV is not associated with a decreased CIN risk or beneficial long-term prognoses, and that excessive HV may increase the risk of CIN after emergent PCI

    Association between admission-blood-glucose-to-albumin ratio and clinical outcomes in patients with ST-elevation myocardial infarction undergoing percutaneous coronary intervention

    Get PDF
    IntroductionIt is unclear whether admission-blood-glucose-to-albumin ratio (AAR) predicts adverse clinical outcomes in patients with ST-segment elevation myocardial infarction (STEMI) who are treated with percutaneous coronary intervention (PCI). Here, we performed a observational study to explore the predictive value of AAR on clinical outcomes.MethodsPatients diagnosed with STEMI who underwent PCI between January 2010 and February 2020 were enrolled in the study. The patients were classified into three groups according to AAR tertile. The primary outcome was in-hospital all-cause mortality, and the secondary outcomes were in-hospital major adverse cardiac events (MACEs), as well as all-cause mortality and MACEs during follow-up. Logistic regression, Kaplan–Meier analysis, and Cox proportional hazard regression were the primary analyses used to estimate outcomes.ResultsAmong the 3,224 enrolled patients, there were 130 cases of in-hospital all-cause mortality (3.9%) and 181 patients (5.4%) experienced MACEs. After adjustment for covariates, multivariate analysis demonstrated that an increase in AAR was associated with an increased risk of in-hospital all-cause mortality [adjusted odds ratio (OR): 2.72, 95% CI: 1.47–5.03, P = 0.001] and MACEs (adjusted OR: 1.91, 95% CI: 1.18–3.10, P = 0.009), as well as long-term all-cause mortality [adjusted hazard ratio (HR): 1.64, 95% CI: 1.19–2.28, P = 0.003] and MACEs (adjusted HR: 1.58, 95% CI: 1.16–2.14, P = 0.003). Receiver operating characteristic (ROC) curve analysis indicated that AAR was an accurate predictor of in-hospital all-cause mortality (AUC = 0.718, 95% CI: 0.675–0.761) and MACEs (AUC = 0.672, 95% CI: 0.631–0.712).DiscussionAAR is a novel and convenient independent predictor of all-cause mortality and MACEs, both in-hospital and long-term, for STEMI patients receiving PCI

    Progress in microalgae cultivation photobioreactors and applications in wastewater treatment: A review

    No full text
    Using microalgae to treat wastewater has received growing attention in the world because it is regarded as a novel means for wastewater treatment. It is commonly recognized that large-scale cultivation and commercial application of microalgae are limited by the development of photobioreactor (PBR). Although there are a lot of PBRs for microalgae pure cultivation which used culture medium, specialized PBRs designed for wastewater treatment are rare. The composition of wastewater is quite complicated; this might cause a very different photosynthetic effect of microalgae compared to those grown in a pure cultivation medium. Therefore, PBRs for wastewater treatment need to be redesigned and improved based on the existing PBRs that are used for microalgae pure cultivation. In this review, different PBRs for microalgae cultivation and wastewater treatment are summarized. PBR configurations, PBR design parameters and types of wastewater are presented. In addition, the wastewater treatment efficiency and biomass productivity were also compared among each type of PBRs. Moreover, some other promising PBRs are introduced in this review, and a two-stage cultivation mode which combines both closed and open system is discussed as well. Ultimately, this article focuses on current problems and gives an outlook for this field, aiming at providing a primary reference for microalgae cultivation by using wastewater

    Temporal changes in the characteristics of algae in Dianchi Lake, Yunnan Province, China

    No full text
    Algal blooms have become a worldwide environmental concern due to water eutrophication. Dianchi Lake in Yunnan Province, China is suffering from severe eutrophication and is listed in the Three Important Lakes Restoration Act of China. Hydrothermal liquefaction allows a promising and direct conversion of algal biomass into biocrude oil. In this study, algal samples were collected from Dianchi Lake after a separation procedure including dissolved air flotation with polyaluminum chloride and centrifugation during four months, April, June, August and October. The algal biochemical components varied over the period; lipids from 0.7% to 2.1% ash-free dry weight (afdw), protein from 20.9% to 33.4% afdw and ash from 36.6% to 45.2% dry weight. The algae in June had the highest lipid and protein concentrations, leading to a maximum biocrude oil yield of 24.3% afdw. Biodiversity analysis using pyrosequencing revealed different distributions of microbial communities, specifically Microcystis in April (89.0%), June (63.7%) and August (84.0%), and Synechococcus in April (2.2%), June (12.0%) and August (1.0%). This study demonstrated remarkable temporal changes in the biochemical composition and biodiversity of algae harvested from Dianchi Lake and changes in biocrude oil production potential

    Expression of ITGAV in Non-small Cell Lung Cancer and Its Relationship with Radioresistance

    No full text
    Objective To investigate the relationship between the expression of ITGAV and the radiosensitivity of NSCLC cells. Methods The expression of ITGAV in NSCLC and its relationship to the prognosis of patients who received radiotherapy were analyzed using bioinformatics methods. Differences in radiosensitivity between radio-resistant cells and parent cells were verified by clone formation experiment, and the protein expression of ITGAV was detected by Western blot. The transfection efficiency of si-ITGAV was determined by Western blot and qRT-PCR analyses. The best ITGAV interference sequence was selected to transfect A549R and H1299R cells. Clone formation experiment and flow cytometry were used to detect clone formation, apoptosis and cell cycle of A549R and H1299R cells. Results The expression of ITGAV in NSCLC tissues was significantly higher than that in normal tissues (P<0.05), and NSCLC patients with high ITGAV expression had poor prognosis. The clonogenic ability of the si-ITGAV group was significantly lower than that of the negative control group at 4, 6, 8Gy irradiation (all P<0.05). After 6 Gy irradiation, the apoptosis of the si-ITGAV group was increased (PH1299R<0.0001, PA549R=0.0002), the proportion of G2/M phase cells to A549-siITGAV and H1299R-siITGAV cells was higher than that in the negative control group (PH1299R<0.0001, PA549R=0.0007). Conclusion Interfering with ITGAV expression can increase the radiosensitivity of NSCLC
    corecore