3 research outputs found

    Anomalous Warm Temperatures Recorded Using Tree Rings in the Headwater of the Jinsha River during the Little Ice Age

    No full text
    As a feature of global warming, climate change has been a severe issue in the 21st century. A more comprehensive reconstruction is necessary in the climate assessment process, considering the heterogeneity of climate change scenarios across various meteorological elements and seasons. To better comprehend the change in minimum temperature in winter in the Jinsha River Basin (China), we built a standard tree-ring chronology from Picea likiangensis var. balfouri and reconstructed the regional mean minimum temperature of the winter half-years from 1606 to 2016. This reconstruction provides a comprehensive overview of the changes in winter temperature over multiple centuries. During the last 411 years, the regional climate has undergone seven warm periods and six cold periods. The reconstructed temperature sensitively captures the climate warming that emerged at the end of the 20th century. Surprisingly, during 1650–1750, the lowest winter temperature within the research area was about 0.44 °C higher than that in the 20th century, which differs significantly from the concept of the “cooler” Little Ice Age during this period. This result is validated by the temperature results reconstructed from other tree-ring data from nearby areas, confirming the credibility of the reconstruction. The Ensemble Empirical Mode Decomposition method (EEMD) was adopted to decompose the reconstructed sequence into oscillations of different frequency domains. The decomposition results indicate that the temperature variations in this region exhibit significant periodic changes with quasi-3a, quasi-7a, 15.5-16.8a, 29.4-32.9a, and quasi-82a cycles. Factors like El Niño–Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and solar activity, along with Atlantic Multidecadal Oscillation (AMO), may be important driving forces. To reconstruct this climate, this study integrates the results of three machine learning algorithms and traditional linear regression methods. This novel reconstruction method can provide valuable insights for related research endeavors. Furthermore, other global climate change scenarios can be explored through additional proxy reconstructions

    Global soil profiles indicate depth-dependent soil carbon losses under a warmer climate

    No full text
    Soil organic carbon (SOC) changes under future climate warming are difficult to quantify in situ. Here we apply an innovative approach combining space-for-time substitution with meta-analysis to SOC measurements in 113,013 soil profiles across the globe to estimate the effect of future climate warming on steady-state SOC stocks. We find that SOC stock will reduce by 6.0 +/- 1.6% (mean +/- 95% confidence interval), 4.8 +/- 2.3% and 1.3 +/- 4.0% at 0-0.3, 0.3-1 and 1-2 m soil depths, respectively, under 1 degrees C air warming, with additional 4.2%, 2.2% and 1.4% losses per every additional 1 degrees C warming, respectively. The largest proportional SOC losses occur in boreal forests. Existing SOC level is the predominant determinant of the spatial variability of SOC changes with higher percentage losses in SOC-rich soils. Our work demonstrates that warming induces more proportional SOC losses in topsoil than in subsoil, particularly from high-latitudinal SOC-rich systems. The response of soil organic carbon to climate warming may be soil depth-dependent, but remains unquantified in situ. Here the authors show that warming induces more proportional soil carbon losses in topsoil than in subsoil, particularly from high-latitudinal carbon-rich soils
    corecore