52 research outputs found

    A comparative study of ion diffusion during water imbibition in shale, sandstone and volcanic rock

    Get PDF
    Ā Ā Ā The recovered fracturing ļ¬‚uid is generally high in salinity (close to 200 kppm), which is related to the diffusion of salt ions from shale reservoir to the fracturing ļ¬‚uid. However, it is not clear about the diffusion capacity of salt ions in different types. In this paper, the shale, tight volcanic and sandstone are selected as comparative study and a series of tests are carried out for the porosity, permeability and mineral composition. The results show that the shale immersing in fracturing ļ¬‚uid will cause ions dissolution and diffusion, which will increase the salinity of the fracturing ļ¬‚uid. The solution salinity increases rapidly in the early stage and gradually slows down in the later stage. The salinity of the fracturing ļ¬‚uid has a linear relationship with the square root of time, so the slope of the curve can be used as a characteristic parameter to evaluate the ion diffusion rate. The process of dissolution and diffusion of salt ions will induce the expansion of micro-cracks, increasing the contact area between the fracturing ļ¬‚uid and shale and enhancing the solution salinity. The ion diffusion rate is positively related with the content of clay minerals and carbonate. The soluble ions include mainly SO42āˆ’, Ca2+, Na+ and K+. The Na+ /Clāˆ’ ratio is closely related to the content of clay minerals and carbonate minerals. It has a positive correlation with content of illite and chlorite, and a negative correlation with carbonate minerals, suggesting NaCl source from illite and chlorite. This study is signiļ¬cant for understanding the salinity characteristics of recovered fracturing ļ¬‚uid and evaluating the fracture network shape.Cited as: Yang, L., Chen, C., Liu, Y., Zheng, Y. A comparative study of ion diffusion during water imbibition in shale, sandstone and volcanic rock. Capillarity, 2020, 3(2): 16-27, doi: 10.46690/capi.2020.02.0

    VertXNet: Automatic Segmentation and Identification of Lumbar and Cervical Vertebrae from Spinal X-ray Images

    Full text link
    Manual annotation of vertebrae on spinal X-ray imaging is costly and time-consuming due to bone shape complexity and image quality variations. In this study, we address this challenge by proposing an ensemble method called VertXNet, to automatically segment and label vertebrae in X-ray spinal images. VertXNet combines two state-of-the-art segmentation models, namely U-Net and Mask R-CNN to improve vertebrae segmentation. A main feature of VertXNet is to also infer vertebrae labels thanks to its Mask R-CNN component (trained to detect 'reference' vertebrae) on a given spinal X-ray image. VertXNet was evaluated on an in-house dataset of lateral cervical and lumbar X-ray imaging for ankylosing spondylitis (AS) patients. Our results show that VertXNet can accurately label spinal X-rays (mean Dice of 0.9). It can be used to circumvent the lack of annotated vertebrae without requiring human expert review. This step is crucial to investigate clinical associations by solving the lack of segmentation, a common bottleneck for most computational imaging projects

    On-Device Domain Generalization

    Full text link
    We present a systematic study of domain generalization (DG) for tiny neural networks. This problem is critical to on-device machine learning applications but has been overlooked in the literature where research has been merely focused on large models. Tiny neural networks have much fewer parameters and lower complexity and therefore should not be trained the same way as their large counterparts for DG applications. By conducting extensive experiments, we find that knowledge distillation (KD), a well-known technique for model compression, is much better for tackling the on-device DG problem than conventional DG methods. Another interesting observation is that the teacher-student gap on out-of-distribution data is bigger than that on in-distribution data, which highlights the capacity mismatch issue as well as the shortcoming of KD. We further propose a method called out-of-distribution knowledge distillation (OKD) where the idea is to teach the student how the teacher handles out-of-distribution data synthesized via disruptive data augmentation. Without adding any extra parameter to the model -- hence keeping the deployment cost unchanged -- OKD significantly improves DG performance for tiny neural networks in a variety of on-device DG scenarios for image and speech applications. We also contribute a scalable approach for synthesizing visual domain shifts, along with a new suite of DG datasets to complement existing testbeds.Comment: Preprin

    Towards automatic scoring of spinal x-ray for ankylosing spondylitis

    Get PDF
    Manually grading structural changes with the modified Stoke Ankylosing Spondylitis Spinal Score (mSASSS) on spinal X-ray imaging is costly and timeconsuming due to bone shape complexity and image quality variations. In this study, we address this challenge by prototyping a 2-step auto-grading pipeline, called VertXGradeNet, to automatically predict mSASSS scores for the cervical and lumbar vertebral units (VUs) in X-ray spinal imaging. The VertXGradeNet utilizes VUs generated by our previously developed VU extraction pipeline (VertXNet) as input and predicts mSASSS based on those VUs. VertXGradeNet was evaluated on an in-house dataset of lateral cervical and lumbar X-ray images for axial spondylarthritis patients. Our results show that VertXGradeNet can predict the mSASSS score for each VU when the data is limited in quantity and imbalanced. Overall, it can achieve a balanced accuracy of 0.56 and 0.51 for 4 different mSASSS scores (i.e., a score of 0, 1, 2, 3) on two test datasets. The accuracy of the presented method shows the potential to streamline the spinal radiograph readings and therefore reduce the cost of future clinical trials

    VertXNet: an ensemble method for vertebral body segmentation and identification from cervical and lumbar spinal X-rays

    Get PDF
    Accurate annotation of vertebral bodies is crucial for automating the analysis of spinal X-ray images. However, manual annotation of these structures is a laborious and costly process due to their complex nature, including small sizes and varying shapes. To address this challenge and expedite the annotation process, we propose an ensemble pipeline called VertXNet. This pipeline currently combines two segmentation mechanisms, semantic segmentation using U-Net, and instance segmentation using Mask R-CNN, to automatically segment and label vertebral bodies in lateral cervical and lumbar spinal X-ray images. VertXNet enhances its effectiveness by adopting a rule-based strategy (termed the ensemble rule) for effectively combining segmentation outcomes from U-Net and Mask R-CNN. It determines vertebral body labels by recognizing specific reference vertebral instances, such as cervical vertebra 2 (ā€˜C2ā€™) in cervical spine X-rays and sacral vertebra 1 (ā€˜S1ā€™) in lumbar spine X-rays. Those references are commonly relatively easy to identify at the edge of the spine. To assess the performance of our proposed pipeline, we conducted evaluations on three spinal X-ray datasets, including two in-house datasets and one publicly available dataset. The ground truth annotations were provided by radiologists for comparison. Our experimental results have shown that the proposed pipeline outperformed two state-of-the-art (SOTA) segmentation models on our test dataset with a mean Dice of 0.90, vs. a mean Dice of 0.73 for Mask R-CNN and 0.72 for U-Net. We also demonstrated that VertXNet is a modular pipeline that enables using other SOTA model, like nnU-Net to further improve its performance. Furthermore, to evaluate the generalization ability of VertXNet on spinal X-rays, we directly tested the pre-trained pipeline on two additional datasets. A consistently strong performance was observed, with mean Dice coefficients of 0.89 and 0.88, respectively. In summary, VertXNet demonstrated significantly improved performance in vertebral body segmentation and labeling for spinal X-ray imaging. Its robustness and generalization were presented through the evaluation of both in-house clinical trial data and publicly available datasets

    Case report: Two cases of Poirier-Bienvenu neurodevelopmental syndrome and review of literature

    Get PDF
    The Poirier-Bienvenu neurodevelopmental syndrome (POBINDS) is a rare disease caused by mutations in the CSNK2B gene, which is characterized by intellectual disability and early-onset epilepsy. Mosaicism has not been previously reported in CSNK2B gene. POBINDS is autosomal dominant and almost all reported cases were de novo variants. Here, we report two patients were diagnosed with POBINDS. Using Whole Exome Sequencing (WES), we detected two novel CSNK2B variants in the two unrelated individuals: c.634_635del (p.Lys212AspfsTer33) and c.142Cā€‰>ā€‰T (p.Gln48Ter) respectively. Both of them showed mild developmental delay with early-onset and clustered seizures. The patient with c.634_635del(p.Lys212AspfsTer33) variant was mutant mosaicism, and the proportion of alleles in peripheral blood DNA was 28%. Further, the literature of patients with a de novo mutation of the CSNK2B gene was reviewed, particularly seizure semiology and genotype-phenotype correlations

    Crosstalk Between Autophagy and Cerebral Ischemia

    Get PDF
    With the use of advanced electron microscopy and molecular biology tools, several studies have shown that autophagy is involved in the development of ischemic stroke. A series of molecular mechanisms are involved in the regulation of autophagy. In this work, the possible molecular mechanisms involved in autophagy during ischemic stroke were reviewed and new potential targets for the study and treatment of ischemic stroke were provided

    MMBench: Is Your Multi-modal Model an All-around Player?

    Full text link
    Large vision-language models have recently achieved remarkable progress, exhibiting great perception and reasoning abilities concerning visual information. However, how to effectively evaluate these large vision-language models remains a major obstacle, hindering future model development. Traditional benchmarks like VQAv2 or COCO Caption provide quantitative performance measurements but suffer from a lack of fine-grained ability assessment and non-robust evaluation metrics. Recent subjective benchmarks, such as OwlEval, offer comprehensive evaluations of a model's abilities by incorporating human labor, but they are not scalable and display significant bias. In response to these challenges, we propose MMBench, a novel multi-modality benchmark. MMBench methodically develops a comprehensive evaluation pipeline, primarily comprised of two elements. The first element is a meticulously curated dataset that surpasses existing similar benchmarks in terms of the number and variety of evaluation questions and abilities. The second element introduces a novel CircularEval strategy and incorporates the use of ChatGPT. This implementation is designed to convert free-form predictions into pre-defined choices, thereby facilitating a more robust evaluation of the model's predictions. MMBench is a systematically-designed objective benchmark for robustly evaluating the various abilities of vision-language models. We hope MMBench will assist the research community in better evaluating their models and encourage future advancements in this domain. Project page: https://opencompass.org.cn/mmbench

    VBench: Comprehensive Benchmark Suite for Video Generative Models

    Full text link
    Video generation has witnessed significant advancements, yet evaluating these models remains a challenge. A comprehensive evaluation benchmark for video generation is indispensable for two reasons: 1) Existing metrics do not fully align with human perceptions; 2) An ideal evaluation system should provide insights to inform future developments of video generation. To this end, we present VBench, a comprehensive benchmark suite that dissects "video generation quality" into specific, hierarchical, and disentangled dimensions, each with tailored prompts and evaluation methods. VBench has three appealing properties: 1) Comprehensive Dimensions: VBench comprises 16 dimensions in video generation (e.g., subject identity inconsistency, motion smoothness, temporal flickering, and spatial relationship, etc). The evaluation metrics with fine-grained levels reveal individual models' strengths and weaknesses. 2) Human Alignment: We also provide a dataset of human preference annotations to validate our benchmarks' alignment with human perception, for each evaluation dimension respectively. 3) Valuable Insights: We look into current models' ability across various evaluation dimensions, and various content types. We also investigate the gaps between video and image generation models. We will open-source VBench, including all prompts, evaluation methods, generated videos, and human preference annotations, and also include more video generation models in VBench to drive forward the field of video generation.Comment: Equal contributions from first four authors. Project page: https://vchitect.github.io/VBench-project/ Code: https://github.com/Vchitect/VBenc

    Application of Angiotensin Receptorā€“Neprilysin Inhibitor in Chronic Kidney Disease Patients: Chinese Expert Consensus

    Get PDF
    Chronic kidney disease (CKD) is a global public health problem, and cardiovascular disease is the most common cause of death in patients with CKD. The incidence and prevalence of cardiovascular events during the early stages of CKD increases significantly with a decline in renal function. More than 50% of dialysis patients die from cardiovascular disease, including coronary heart disease, heart failure, arrhythmia, and sudden cardiac death. Therefore, developing effective methods to control risk factors and improve prognosis is the primary focus during the diagnosis and treatment of CKD. For example, the SPRINT study demonstrated that CKD drugs are effective in reducing cardiovascular and cerebrovascular events by controlling blood pressure. Uncontrolled blood pressure not only increases the risk of these events but also accelerates the progression of CKD. A co-crystal complex of sacubitril, which is a neprilysin inhibitor, and valsartan, which is an angiotensin receptor blockade, has the potential to be widely used against CKD. Sacubitril inhibits neprilysin, which further reduces the degradation of natriuretic peptides and enhances the beneficial effects of the natriuretic peptide system. In contrast, valsartan alone can block the angiotensin II-1 (AT1) receptor and therefore inhibit the reninā€“angiotensinā€“aldosterone system. These two components can act synergistically to relax blood vessels, prevent and reverse cardiovascular remodeling, and promote natriuresis. Recent studies have repeatedly confirmed that the first and so far the only angiotensin receptorā€“neprilysin inhibitor (ARNI) sacubitril/valsartan can reduce blood pressure more effectively than reninā€“angiotensin system inhibitors and improve the prognosis of heart failure in patients with CKD. Here, we propose clinical recommendations based on an expert consensus to guide ARNI-based therapeutics and reduce the occurrence of cardiovascular events in patients with CKD
    • ā€¦
    corecore