341 research outputs found

    Decreasing the uncertainty of atomic clocks via real-time noise distinguish

    Full text link
    The environmental perturbation on atoms is the key factor restricting the performance of atomic frequency standards, especially in long term scale. In this letter, we demonstrate a real-time noise distinguish operation of atomic clocks. The operation improves the statistical uncertainty by about an order of magnitude of our fountain clock which is deteriorated previously by extra noises. The frequency offset bring by the extra noise is also corrected. The experiment proves the real-time noise distinguish operation can reduce the contribution of ambient noises and improve the uncertainty limit of atomic clocks.Comment: 5 pages, 4 figures, 1 tabl

    Deep Generative Imputation Model for Missing Not At Random Data

    Full text link
    Data analysis usually suffers from the Missing Not At Random (MNAR) problem, where the cause of the value missing is not fully observed. Compared to the naive Missing Completely At Random (MCAR) problem, it is more in line with the realistic scenario whereas more complex and challenging. Existing statistical methods model the MNAR mechanism by different decomposition of the joint distribution of the complete data and the missing mask. But we empirically find that directly incorporating these statistical methods into deep generative models is sub-optimal. Specifically, it would neglect the confidence of the reconstructed mask during the MNAR imputation process, which leads to insufficient information extraction and less-guaranteed imputation quality. In this paper, we revisit the MNAR problem from a novel perspective that the complete data and missing mask are two modalities of incomplete data on an equal footing. Along with this line, we put forward a generative-model-specific joint probability decomposition method, conjunction model, to represent the distributions of two modalities in parallel and extract sufficient information from both complete data and missing mask. Taking a step further, we exploit a deep generative imputation model, namely GNR, to process the real-world missing mechanism in the latent space and concurrently impute the incomplete data and reconstruct the missing mask. The experimental results show that our GNR surpasses state-of-the-art MNAR baselines with significant margins (averagely improved from 9.9% to 18.8% in RMSE) and always gives a better mask reconstruction accuracy which makes the imputation more principle

    Electrochemical Parameter Identification for Lithium-ion Battery Sources in Self-Sustained Transportation Energy Systems

    Full text link
    Lithium-ion battery (LIB) sources have played an essential role in self-sustained transportation energy systems and have been widely deployed in the last few years. To realize reliable battery maintenance, identifying its electrochemical parameters is necessary. However, the battery model contains many parameters while the measurable states are only the current and voltage, inducing the identification inherently an ill-conditioned problem. A parameter identification approach is proposed, including the experiment, model, and algorithm. Electrochemical parameters are first grouped manually based on the physical properties and assigned to two sequenced tests for identification. The two tests named the quasi-static test and the dynamic test, are compressed on time for practical implementation. Proper optimization models and a sensitivity-oriented stepwise (SSO) optimization algorithm are developed to search for the optimal parameters efficiently. Typically, the Sobol method is applied to conduct the sensitivity analysis. Based on the sensitivity indexes, the SSO algorithm can decouple the mixed impacts of different parameters during the identification. For validation, numerical experiments on a typical NCM811 battery at different life stages are conducted. The proposed approach saves about half the time finding the proper parameter value. The identification accuracy of crucial parameters related to battery degradation can exceed 95\%. Case study results indicate that the identified parameters can not only improve the accuracy of the battery model but also be used as the indicator of the battery SOH

    300 GHz Dual-Band Channel Measurement, Analysis and Modeling in an L-shaped Hallway

    Full text link
    The Terahertz (THz) band (0.1-10 THz) has been envisioned as one of the promising spectrum bands for sixth-generation (6G) and beyond communications. In this paper, a dual-band angular-resolvable wideband channel measurement in an indoor L-shaped hallway is presented and THz channel characteristics at 306-321 GHz and 356-371 GHz are analyzed. It is found that conventional close-in and alpha-beta path loss models cannot take good care of large-scale fading in the non-line-of-sight (NLoS) case, for which a modified alpha-beta path loss model for the NLoS case is proposed and verified in the NLoS case for both indoor and outdoor L-shaped scenarios. To describe both large-scale and small-scale fading, a ray-tracing (RT)-statistical hybrid channel model is proposed in the THz hallway scenario. Specifically in the hybrid model, the deterministic part in hybrid channel modeling uses RT modeling of dominant multi-path components (MPCs), i.e., LoS and multi-bounce reflected paths in the near-NLoS region, while dominant MPCs at far-NLoS positions can be deduced based on the developed statistical evolving model. The evolving model describes the continuous change of arrival angle, power and delay of dominant MPCs in the NLoS region. On the other hand, non-dominant MPCs are generated statistically. The proposed hybrid approach reduces the computational cost and solves the inaccuracy or even missing of dominant MPCs through RT at far-NLoS positions

    300 GHz Channel Measurement and Characterization in the Atrium of a Building

    Full text link
    With abundant bandwidth resource, the Terahertz band (0.1~THz to 10~THz) is envisioned as a key technology to realize ultra-high data rates in the 6G and beyond mobile communication systems. However, moving to the THz band, existing channel models dedicated for microwave or millimeter-wave bands are ineffective. To fill this research gap, extensive channel measurement campaigns and characterizations are necessary. In this paper, using a frequency-domain Vector Network Analyzer (VNA)-based sounder, a measurement campaign is conducted in the outdoor atrium of a building in 306-321 GHz band. The measured data are further processed to obtain the channel transfer functions (CTFs), parameters of multipath components (MPCs), as well as clustering results. Based on the MPC parameters, the channel characteristics, such as path loss, shadow fading, K-factor, etc., are calculated and analyzed. The extracted channel characteristics and numerology are helpful to study channel modeling and guide system design for THz communications.Comment: 5 pages, 2 figures. arXiv admin note: text overlap with arXiv:2203.16745 by other author

    306-321 GHz Wideband Channel Measurement and Analysis in an Indoor Lobby

    Full text link
    The Terahertz (0.1-10 THz) band has been envisioned as one of the promising spectrum bands to support ultra-broadband sixth-generation (6G) and beyond communications. In this paper, a wideband channel measurement campaign in an indoor lobby at 306-321 GHz is presented. The measurement system consists of a vector network analyzer (VNA)-based channel sounder, and a directional antenna equipped at the receiver to resolve multi-path components (MPCs) in the angular domain. In particular, 21 positions and 3780 channel impulse responses (CIRs) are measured in the lobby, including the line-of-sight (LoS), non-line-of-sight (NLoS) and obstructed-line-of-sight (OLoS) cases. Multi-path propagation is elaborated in terms of clustering results, and the effect of typical scatterers in the indoor lobby scenario in the THz band is explored. Moreover, indoor THz channel characteristics are analyzed in depth. Specifically, best direction and omni-directional path losses are analyzed by invoking close-in and alpha-beta path loss models. The most clusters are observed in the OLoS case, followed by NLoS and then LoS cases. On average, the power dispersion of MPCs is smaller in the LoS case in both temporal and angular domains, compared with the NLoS and OLoS counterparts.Comment: 6 pages, 15 figure

    DSS-o-SAGE: Direction-Scan Sounding-Oriented SAGE Algorithm for Channel Parameter Estimation in mmWave and THz Bands

    Full text link
    Investigation of millimeter (mmWave) and Terahertz (THz) channels relies on channel measurements and estimation of multi-path component (MPC) parameters. As a common measurement technique in the mmWave and THz bands, direction-scan sounding (DSS) resolves angular information and increases the measurable distance. Through mechanical rotation, the DSS creates a virtual multi-antenna sounding system, which however incurs signal phase instability and large data sizes, which are not fully considered in existing estimation algorithms and thus make them ineffective. To tackle this research gap, in this paper, a DSS-oriented space-alternating generalized expectation-maximization (DSS-o-SAGE) algorithm is proposed for channel parameter estimation in mmWave and THz bands. To appropriately capture the measured data in mmWave and THz DSS, the phase instability is modeled by the scanning-direction-dependent signal phases. Furthermore, based on the signal model, the DSS-o-SAGE algorithm is developed, which not only addresses the problems brought by phase instability, but also achieves ultra-low computational complexity by exploiting the narrow antenna beam property of DSS. Simulations in synthetic channels are conducted to demonstrate the efficacy of the proposed algorithm and explore the applicable region of the far-field approximation in DSS-o-SAGE. Last but not least, the proposed DSS-o-SAGE algorithm is applied in real measurements in an indoor corridor scenario at 300~GHz. Compared with results using the baseline noise-elimination method, the channel is characterized more correctly and reasonably based on the DSS-o-SAGE.Comment: 15 pages, 10 figures, 3 table
    corecore