228 research outputs found

    Crypt-DAC: Cryptographically Enforced Dynamic Access Control in the Cloud

    Get PDF
    Enabling cryptographically enforced access controls for data hosted in untrusted cloud is attractive for many users and organizations. However, designing efficient cryptographically enforced dynamic access control system in the cloud is still challenging. In this paper, we propose Crypt-DAC, a system that provides practical cryptographic enforcement of dynamic access control. Crypt-DAC revokes access permissions by delegating the cloud to update encrypted data. In Crypt-DAC, a file is encrypted by a symmetric key list which records a file key and a sequence of revocation keys. In each revocation, a dedicated administrator uploads a new revocation key to the cloud and requests it to encrypt the file with a new layer of encryption and update the encrypted key list accordingly. Crypt-DAC proposes three key techniques to constrain the size of key list and encryption layers. As a result, Crypt-DAC enforces dynamic access control that provides efficiency, as it does not require expensive decryption/re- encryption and uploading/re-uploading of large data at the administrator side, and security, as it immediately revokes ac- cess permissions. We use formalization framework and system implementation to demonstrate the security and efficiency of our construction

    PLACE: Physical Layer Cardinality Estimation for Large-Scale RFID Systems

    Full text link

    Read Bulk Data From Computational RFIDs

    Full text link

    Texture and lattice strain evolution during tensile loading of Mg–Zn alloys measured by synchrotron diffraction

    Get PDF
    To explore the effect of neodymium (Nd) on the deformation mechanisms of Mg–Zn alloys, texture and lattice strain developments of hot-rolled Mg–Zn (Z1) and Mg–Zn–Nd (ZN10) alloys were investigated using in situ synchrotron diffraction and compared with elasto-viscoplastic self-consistent simulation under tensile loading. The Nd-containing ZN10 alloys show much weaker texture after hot rolling than the Nd-free Z1 alloy. To investigate the influence of the initial texture on the texture and lattice strain evolution, the tensile tests were carried out in the rolling and transverse direction. During tension, the {002} texture components develop fast in Z1, which was not seen for ZN10. On the other hand, fiber // loading direction (LD) developed in both alloys, although it was faster in ZN10 than in Z1. Lattice strain investigation showed that // LD-oriented grains experienced plastic deformation first during tension, which can be related to basal slip activity. This was more apparent for ZN10 than for Z1. The simulation results show that the prismatic slip plays a vital role in the plastic deformation of Z1 directly from the beginning. In contrast, ZN10 plastic deformation starts with dominant basal slip but during deformation prismatic slip becomes increasingly important

    Enhanced production of highly methylated brGDGTs linked to anaerobic bacteria from sediments of the Mariana Trench

    Get PDF
    Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are bacterial membrane lipids that are widely used in terrestrial paleoclimatic reconstructions. Recent studies have reported that brGDGTs can also be produced by marine bacteria. However, the environmental factors influencing marine-derived brGDGTs and their source organisms remain largely unknown. Here, we investigated the distribution and composition of brGDGTs and a suite of their putative derivatives called overly branched GDGTs (obGDGTs) in the Mariana Trench core sediments (water depth 8300 m, core length 320 cm), as well as the composition of bacterial communities. The ratio of the branched over isoprenoid tetraethers (BIT) was 0.03-0.21 (average 0.07; SD = 0.04; n = 21) and the ratio ΣIIIa/ΣIIa of brGDGTs was 0.93-7.47 (average 3.39; SD = 1.73; n = 21), which support the in situ production of brGDGTs. Co-occurrence network analysis revealed that a total of 33 types of bacteria at the order level (e.g., Armatimonadota DG-56, Proteobacteria Rhodospirillales, Chloroflexi SAR202_clade) were closely related to the distribution of brGDGTs and obGDGTs, which could be potential sources for these compounds. The abrupt increase in brGDGT and obGDGT concentrations in deeper oxygen-depleted sediments and their good correlations with anaerobic bacterial abundances suggest that these brGDGTs and obGDGTs may be produced by anaerobic bacteria residing in the anoxic sediments. Considerable variation in the degrees of methylation and cyclization of brGDGTs (obGDGTs) under different redox conditions indicate that sediment oxygen levels may have a profound impact on the presence and abundance of brGDGTs and obGDGTs, which should be considered when applying them for paleo-temperature or pH reconstructions. This study shows that brGDGTs and obGDGTs obtained from the Mariana Trench were probably produced by a variety of bacterial phyla indigenous in the hadal ocean, which are different from Acidobacteria commonly considered to be major terrestrial sources of brGDGTs

    Reproducibility and Discriminability of Brain Patterns of Semantic Categories Enhanced by Congruent Audiovisual Stimuli

    Get PDF
    One of the central questions in cognitive neuroscience is the precise neural representation, or brain pattern, associated with a semantic category. In this study, we explored the influence of audiovisual stimuli on the brain patterns of concepts or semantic categories through a functional magnetic resonance imaging (fMRI) experiment. We used a pattern search method to extract brain patterns corresponding to two semantic categories: “old people” and “young people.” These brain patterns were elicited by semantically congruent audiovisual, semantically incongruent audiovisual, unimodal visual, and unimodal auditory stimuli belonging to the two semantic categories. We calculated the reproducibility index, which measures the similarity of the patterns within the same category. We also decoded the semantic categories from these brain patterns. The decoding accuracy reflects the discriminability of the brain patterns between two categories. The results showed that both the reproducibility index of brain patterns and the decoding accuracy were significantly higher for semantically congruent audiovisual stimuli than for unimodal visual and unimodal auditory stimuli, while the semantically incongruent stimuli did not elicit brain patterns with significantly higher reproducibility index or decoding accuracy. Thus, the semantically congruent audiovisual stimuli enhanced the within-class reproducibility of brain patterns and the between-class discriminability of brain patterns, and facilitate neural representations of semantic categories or concepts. Furthermore, we analyzed the brain activity in superior temporal sulcus and middle temporal gyrus (STS/MTG). The strength of the fMRI signal and the reproducibility index were enhanced by the semantically congruent audiovisual stimuli. Our results support the use of the reproducibility index as a potential tool to supplement the fMRI signal amplitude for evaluating multimodal integration
    corecore