919 research outputs found
LIFE: Learning Individual Features for Multivariate Time Series Prediction with Missing Values
Multivariate time series (MTS) prediction is ubiquitous in real-world fields,
but MTS data often contains missing values. In recent years, there has been an
increasing interest in using end-to-end models to handle MTS with missing
values. To generate features for prediction, existing methods either merge all
input dimensions of MTS or tackle each input dimension independently. However,
both approaches are hard to perform well because the former usually produce
many unreliable features and the latter lacks correlated information. In this
paper, we propose a Learning Individual Features (LIFE) framework, which
provides a new paradigm for MTS prediction with missing values. LIFE generates
reliable features for prediction by using the correlated dimensions as
auxiliary information and suppressing the interference from uncorrelated
dimensions with missing values. Experiments on three real-world data sets
verify the superiority of LIFE to existing state-of-the-art models
Restoring Images Captured in Arbitrary Hybrid Adverse Weather Conditions in One Go
Adverse conditions typically suffer from stochastic hybrid weather
degradations (e.g., rainy and hazy night), while existing image restoration
algorithms envisage that weather degradations occur independently, thus may
fail to handle real-world complicated scenarios. Besides, supervised training
is not feasible due to the lack of a comprehensive paired dataset to
characterize hybrid conditions. To this end, we have advanced the
aforementioned limitations with two tactics: framework and data. First, we
present a novel unified framework, dubbed RAHC, to Restore Arbitrary Hybrid
adverse weather Conditions in one go. Specifically, our RAHC leverages a
multi-head aggregation architecture to learn multiple degradation
representation subspaces and then constrains the network to flexibly handle
multiple hybrid adverse weather in a unified paradigm through a discrimination
mechanism in the output space. Furthermore, we devise a reconstruction vectors
aided scheme to provide auxiliary visual content cues for reconstruction, thus
can comfortably cope with hybrid scenarios with insufficient remaining image
constituents. Second, we construct a new dataset, termed HAC, for learning and
benchmarking arbitrary Hybrid Adverse Conditions restoration. HAC contains 31
scenarios composed of an arbitrary combination of five common weather, with a
total of ~316K adverse-weather/clean pairs. Extensive experiments yield
superior results and establish new state-of-the-art results on both HAC and
conventional datasets.Comment: In submissio
Silicon nitride metalenses for unpolarized high-NA visible imaging
As one of nanoscale planar structures, metasurface has shown excellent
superiorities on manipulating light intensity, phase and/or polarization with
specially designed nanoposts pattern. It allows to miniature a bulky optical
lens into the chip-size metalens with wavelength-order thickness, playing an
unprecedented role in visible imaging systems (e.g. ultrawide-angle lens and
telephoto). However, a CMOS-compatible metalens has yet to be achieved in the
visible region due to the limitation on material properties such as
transmission and compatibility. Here, we experimentally demonstrate a divergent
metalens based on silicon nitride platform with large numerical aperture
(NA~0.98) and high transmission (~0.8) for unpolarized visible light,
fabricated by a 695-nm-thick hexagonal silicon nitride array with a minimum
space of 42 nm between adjacent nanoposts. Nearly diffraction-limit virtual
focus spots are achieved within the visible region. Such metalens enables to
shrink objects into a micro-scale size field of view as small as a single-mode
fiber core. Furthermore, a macroscopic metalens with 1-cm-diameter is also
realized including over half billion nanoposts, showing a potential application
of wide viewing-angle functionality. Thanks to the high-transmission and
CMOS-compatibility of silicon nitride, our findings may open a new door for the
miniaturization of optical lenses in the fields of optical fibers,
microendoscopes, smart phones, aerial cameras, beam shaping, and other
integrated on-chip devices.Comment: 16 pages, 7 figure
- …