28,639 research outputs found

    The EM Algorithm and the Rise of Computational Biology

    Get PDF
    In the past decade computational biology has grown from a cottage industry with a handful of researchers to an attractive interdisciplinary field, catching the attention and imagination of many quantitatively-minded scientists. Of interest to us is the key role played by the EM algorithm during this transformation. We survey the use of the EM algorithm in a few important computational biology problems surrounding the "central dogma"; of molecular biology: from DNA to RNA and then to proteins. Topics of this article include sequence motif discovery, protein sequence alignment, population genetics, evolutionary models and mRNA expression microarray data analysis.Comment: Published in at http://dx.doi.org/10.1214/09-STS312 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Large Covariance Estimation by Thresholding Principal Orthogonal Complements

    Full text link
    This paper deals with the estimation of a high-dimensional covariance with a conditional sparsity structure and fast-diverging eigenvalues. By assuming sparse error covariance matrix in an approximate factor model, we allow for the presence of some cross-sectional correlation even after taking out common but unobservable factors. We introduce the Principal Orthogonal complEment Thresholding (POET) method to explore such an approximate factor structure with sparsity. The POET estimator includes the sample covariance matrix, the factor-based covariance matrix (Fan, Fan, and Lv, 2008), the thresholding estimator (Bickel and Levina, 2008) and the adaptive thresholding estimator (Cai and Liu, 2011) as specific examples. We provide mathematical insights when the factor analysis is approximately the same as the principal component analysis for high-dimensional data. The rates of convergence of the sparse residual covariance matrix and the conditional sparse covariance matrix are studied under various norms. It is shown that the impact of estimating the unknown factors vanishes as the dimensionality increases. The uniform rates of convergence for the unobserved factors and their factor loadings are derived. The asymptotic results are also verified by extensive simulation studies. Finally, a real data application on portfolio allocation is presented

    Risks of Large Portfolios

    Get PDF
    Estimating and assessing the risk of a large portfolio is an important topic in financial econometrics and risk management. The risk is often estimated by a substitution of a good estimator of the volatility matrix. However, the accuracy of such a risk estimator for large portfolios is largely unknown, and a simple inequality in the previous literature gives an infeasible upper bound for the estimation error. In addition, numerical studies illustrate that this upper bound is very crude. In this paper, we propose factor-based risk estimators under a large amount of assets, and introduce a high-confidence level upper bound (H-CLUB) to assess the accuracy of the risk estimation. The H-CLUB is constructed based on three different estimates of the volatility matrix: sample covariance, approximate factor model with known factors, and unknown factors (POET, Fan, Liao and Mincheva, 2013). For the first time in the literature, we derive the limiting distribution of the estimated risks in high dimensionality. Our numerical results demonstrate that the proposed upper bounds significantly outperform the traditional crude bounds, and provide insightful assessment of the estimation of the portfolio risks. In addition, our simulated results quantify the relative error in the risk estimation, which is usually negligible using 3-month daily data. Finally, the proposed methods are applied to an empirical study
    • …
    corecore